Skip to main content
Log in

Preparation of SiO2-KMCHCF composites and its adsorption characteristics for Cs+ and Sb(V) ions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, ferromanganese cobalt potassium cyanide/silica composite (SiO2-KMCHCF) was prepared by a modified coprecipitation method, and the static adsorption of Cs+ and Sb(V) were carried out. The results showed that the material had a regular structure, was not easy to agglomerate, and more compatible functional groups (HCTMA+) and groups (Si–OH), had strong adsorption capacity for Cs+ and Sb(V). At pH = 7 and initial concentration of 10 mg/L, the maximum removal rates of Cs+ and Sb (V) were 92% and 80%, respectively. The pseudo-second-order kinetic and Langmuir model had the best fitting correlation, and the maximum adsorption capacity was 200.4 mg/g and 21.85 mg/g, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Evrard O, Laceby JP, Lepage H, Onda Y, Cerdan O, Ayrault S (2015) Radiocesium transfer from hillslopes to the pacific ocean after the fukushima nuclear power plant accident: a review. J Environ Radioact 148:92–110. https://doi.org/10.1016/j.jenvrad.2015.06.018

    Article  PubMed  CAS  Google Scholar 

  2. Ogawa N, Amano T, Koike Y (2021) Elution control of radioactive cesium in MSWI fly ash using water repellent treatment. J Mater Cycles Waste Manage 23:158–164. https://doi.org/10.1007/s10163-020-01111-5

    Article  CAS  Google Scholar 

  3. Zheng X-M, Dou J-F, Xia M, Ding A-Z (2017) Ammonium-pillared montmorillonite-CoFe2O4 composite caged in calcium alginate beads for the removal of Cs+ from wastewater. Carbohyd Polym 167:306–316. https://doi.org/10.1016/j.carbpol.2017.03.059

    Article  CAS  Google Scholar 

  4. Deng D, Zhang L, Dong M, Samuel RE, Ofori-Boadu A, Lamssali M (2020) Radioactive waste: a review. Water Environ Res 92:1818–1825. https://doi.org/10.1002/wer.1442

    Article  PubMed  CAS  Google Scholar 

  5. Zhang X, Liu Y (2020) Nanomaterials for radioactive wastewater decontamination. Environ Sci Nano 7:1008–1040. https://doi.org/10.1039/c9en01341e

    Article  CAS  Google Scholar 

  6. Fisher NS, Beaugelin-Seiller K, Hinton TG, Baumann Z, Madigan DJ, Garnier-Laplace J (2013) Evaluation of radiation doses and associated risk from the Fukushima nuclear accident to marine biota and human consumers of seafood. Proc Natl Acad Sci USA 110:10670–10675. https://doi.org/10.1073/pnas.1221834110

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wang X, Yu S, Jin J, Wang H, Alharbi NS, Alsaedi A, Hayat T, Wang X (2016) Application of graphene oxides and graphene oxide-based nanomaterials in radionuclide removal from aqueous solutions. Sci Bull 61:1583–1593. https://doi.org/10.1007/s11434-016-1168-x

    Article  CAS  Google Scholar 

  8. Filella M, Belzile N, Chen YW (2002) Antimony in the environment: a review focused on natural waters II. Relevant Solut Chem Earth Sci Rev 59:265–285. https://doi.org/10.1016/s0012-8252(02)00089-2

    Article  CAS  Google Scholar 

  9. Qi P, Wang Y, Zeng J, Sui K, Zhao J (2021) Progress in antimony capturing by superior materials: mechanisms, properties and perspectives. Chem Eng J. https://doi.org/10.1016/j.cej.2021.130013

    Article  PubMed  Google Scholar 

  10. Natasha SM, Khalid S, Dumat C, Pierart A, Niazi NK (2019) Biogeochemistry of antimony in soil-plant system: ecotoxicology and human health. Appl Geochem 106:45–59. https://doi.org/10.1016/j.apgeochem.2019.04.006

    Article  CAS  Google Scholar 

  11. Ungureanu G, Santos S, Boaventura R, Botelho C (2015) Arsenic and antimony in water and wastewater: overview of removal techniques with special reference to latest advances in adsorption. J Environ Manage 151:326–342. https://doi.org/10.1016/j.jenvman.2014.12.051

    Article  PubMed  CAS  Google Scholar 

  12. Bengiat R, Bogoslaysky B, Mandler D, Almog J (2018) Selective binding and precipitation of cesium ions from aqueous solutions: a Size-Driven supramolecular reaction. Chem a Eur J 24:3161–3164. https://doi.org/10.1002/chem.201706181

    Article  CAS  Google Scholar 

  13. Zakrzewska-Trznadel G, Harasimowicz M, Chmielewski AG (2001) Membrane processes in nuclear technology - application for liquid radioactive waste treatment. Sep Purif Technol 22–3:617–625. https://doi.org/10.1016/s1383-5866(00)00167-2

    Article  Google Scholar 

  14. Arar O, Yuksel U, Kabay N, Yuksel M (2013) Application of electrodeionization (EDI) for removal of boron and silica from reverse osmosis (RU) permeate of geothermal water. Desalination 310:25–33. https://doi.org/10.1016/j.desal.2012.10.001

    Article  CAS  Google Scholar 

  15. Shukla A, Parmar P, Sarar M (2017) Radiation, radionuclides and bacteria: an in-perspective review. J Environ Radioact 180:27–35. https://doi.org/10.1016/j.jenvrad.2017.09.013

    Article  PubMed  CAS  Google Scholar 

  16. Zhang X, Gu P, Li X, Zhang G (2017) Efficient adsorption of radioactive iodide ion from simulated wastewater by nano Cu2O/Cu modified activated carbon. Chem Eng J 322:129–139. https://doi.org/10.1016/j.cej.2017.03.102

    Article  CAS  Google Scholar 

  17. Li C, Liu C, Chen L, Ye Z, Zhang Y, Wang X, Wei Y (2019) Studies on the separation and in-situ sintering solidification of strontium by a highly-efficient titanate-based adsorbent. Micropor Mesopor Mater. https://doi.org/10.1016/j.micromeso.2019.109607

    Article  Google Scholar 

  18. Aguilar-Carrillo J, Herrera-Garcia L, Reyes-Dominguez IA, Gutierrez EJ (2020) Thallium(I) sequestration by jarosite and birnessite: Structural incorporation vs surface adsorption. Environ Pollut. https://doi.org/10.1016/j.envpol.2019.113492

    Article  PubMed  Google Scholar 

  19. Li W-A, Li J-R, Zhang B, Sun H-Y, Jin J-C, Huang X-Y, Feng M-L (2021) Layered thiostannates with distinct arrangements of mixed cations for the selective capture of Cs+, Sr2+, and Eu3+ Ions. ACS Appl Mater Interf 13:10191–10201. https://doi.org/10.1021/acsami.0c22690

    Article  CAS  Google Scholar 

  20. Chen S, Hu J, Han S, Guo Y, Belzile N, Deng T (2020) A review on emerging composite materials for cesium adsorption and environmental remediation on the latest decade. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2020.117340

    Article  Google Scholar 

  21. Loos-Neskovic C, Ayrault S, Badillo V, Jimenez B, Garnier E, Fedoroff M, Jones DJ, Merinov B (2004) Structure of copper-potassium hexacyanoferrate (II) and sorption mechanisms of cesium. J Solid State Chem 177:1817–1828. https://doi.org/10.1016/j.jssc.2004.01.018

    Article  CAS  Google Scholar 

  22. Vincent T, Vincent C, Guibal E (2015) Immobilization of metal hexacyanoferrate ion-exchangers for the synthesis of metal ion sorbents-a mini-review. Molecules 20:20582–20613. https://doi.org/10.3390/molecules201119718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Yang X, Jiang L, Peng S, Zhang L, Huang G (2021) Removal of cesium from liquid radioactive waste by in situ electrochemical synthesis of cesium zinc ferrocyanide. Coll Surf Phys Eng Aspects. https://doi.org/10.1016/j.colsurfa.2021.127050

    Article  Google Scholar 

  24. Jiang X, Liu H, Song J, Yin C, Xu H (2016) Hierarchical mesoporous octahedral K2Mn1-xCoxFe(CN)(6) as a superior cathode material for sodium- ion batteries. J Mater Chem A 4:16205–16212. https://doi.org/10.1039/c6ta06658e

    Article  CAS  Google Scholar 

  25. Hu M, Furukawa S, Ohtani R, Sukegawa H, Nemoto Y, Reboul J, Kitagawa S, Yamauchi Y (2012) Synthesis of prussian blue nanoparticles with a hollow interior by controlled chemical etching. Angewandte Chemie-Int Edition 51:984–988. https://doi.org/10.1002/anie.201105190

    Article  CAS  Google Scholar 

  26. Jang J, Lee DS (2016) Enhanced adsorption of cesium on PVA-alginate encapsulated Prussian blue-graphene oxide hydrogel beads in a fixed-bed column system. Biores Technol 218:294–300. https://doi.org/10.1016/j.biortech.2016.06.100

    Article  CAS  Google Scholar 

  27. Vipin AK, Fugetsu B, Sakata I, Isogai A, Endo M, Li M, Dresselhaus MS (2016) Cellulose nanofiber backboned Prussian blue nanoparticles as powerful adsorbents for the selective elimination of radioactive cesium. Sci Rep. https://doi.org/10.1038/srep37009

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sangvanich T, Sukwarotwat V, Wiacek RJ, Grudzien RM, Fryxell GE, Addleman RS, Timchalk C, Yantasee W (2010) Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica. J Hazard Mater 182:225–231. https://doi.org/10.1016/j.jhazmat.2010.06.019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Michel C, Barre Y, Ben Guiza M, de Dieuleveult C, De Windt L, Grandjean A (2018) Breakthrough studies of the adsorption of Cs from freshwater using a mesoporous silica material containing ferrocyanide. Chem Eng J 339:288–295. https://doi.org/10.1016/j.cej.2018.01.101

    Article  CAS  Google Scholar 

  30. Jang J, Lee DS (2016) Magnetic Prussian blue nanocomposites for effective Cesium removal from aqueous solution. Ind Eng Chem Res 55:3852–3860. https://doi.org/10.1021/acs.iecr.6b00112

    Article  CAS  Google Scholar 

  31. Deihimi N, Irannajad M, Rezai B (2018) Equilibrium and kinetic studies of ferricyanide adsorption from aqueous solution by activated red mud. J Environ Manage 227:277–285. https://doi.org/10.1016/j.jenvman.2018.08.089

    Article  PubMed  CAS  Google Scholar 

  32. Gemici BT, Ozel HU, Ozel HB (2020) Adsorption behaviors of crystal violet from aqueous solution using Anatolian black pine (Pinus nigra Arnold.): kinetic and equilibrium studies. Sep Sci Technol 55:406–414. https://doi.org/10.1080/01496395.2019.1577268

    Article  CAS  Google Scholar 

  33. Quilez J (2021) On the early thermodynamic and kinetic deductions of the equilibrium constant equation. Found Chem 23:85–103. https://doi.org/10.1007/s10698-020-09376-2

    Article  Google Scholar 

  34. Li F, Yang Z, Weng H, Chen G, Lin M, Zhao C (2018) High efficient separation of U(VI) and Th(IV) from rare earth elements in strong acidic solution by selective sorption on phenanthroline diamide functionalized graphene oxide. Chem Eng J 332:340–350. https://doi.org/10.1016/j.cej.2017.09.038

    Article  CAS  Google Scholar 

  35. Shehzad H, Zhou L, Li Z, Chen Q, Wang Y, Liu Z, Adesina AA (2018) Effective adsorption of U(VI) from aqueous solution using magnetic chitosan nanoparticles grafted with maleic anhydride: equilibrium, kinetic and thermodynamic studies. J Radioanal Nucl Chem 315:195–206. https://doi.org/10.1007/s10967-017-5647-6

    Article  CAS  Google Scholar 

  36. Alby D, Charnay C, Heran M, Prelot B, Zajac J (2018) Recent developments in nanostructured inorganic materials for sorption of cesium and strontium: Synthesis and shaping, sorption capacity, mechanisms, and selectivity: a review. J Hazard Mater 344:511–530. https://doi.org/10.1016/j.jhazmat.2017.10.047

    Article  PubMed  CAS  Google Scholar 

  37. Karbul A, Mohammadi MK, Yengejeh RJ, Farrokhian F (2021) Synthesis and Characterization of Trimetallic Fe-Co-V/Zeolite and Fe-Co-Mo/Zeolite Composite Nanostructures. Mater Res Ibero Am J Mater. https://doi.org/10.1590/1980-5373-mr-2020-0292

    Article  Google Scholar 

  38. Sarmah K, Pratihar S (2020) Synthesis, characterization, and photocatalytic application of iron oxalate capped Fe, Fe-Cu, Fe-Co, and Fe-Mn Oxide Nanomaterial (vol 5, pg 310, 2017). Acs Sustain Chem Eng 8:18346–18346. https://doi.org/10.1021/acssuschemeng.0c08456

    Article  CAS  Google Scholar 

  39. Adebiyi BM, Durai E-SM, Beall GW (2019) One pot synthesis of nickel ferrite-graphitic layers nanocomposite with inverted magnetic hysteresis. J Magn Magn Mater. https://doi.org/10.1016/j.jmmm.2019.165401

    Article  Google Scholar 

  40. Nasrollahzadeh M, Maryami M, Sajjadi M, Mehdipour E (2019) Synthesis, characterization and catalytic performance of Pd(II) complex immobilized on Fe3O4@SiO2 nanoparticles for the ligand-free cyanation of aryl halides using K4Fe(CN)(6). Appl Organomet Chem. https://doi.org/10.1002/aoc.4730

    Article  Google Scholar 

  41. Jiang J, Ma L, Chen J, Zhang P, Wu H, Zhang Z, Wang S, Yun W, Li Y, Jia J, Liao J (2017) SERS detection and characterization of uranyl ion sorption on silver nanorods wrapped with Al2O3 layers. Microchim Acta 184:2775–2782. https://doi.org/10.1007/s00604-017-2286-0

    Article  CAS  Google Scholar 

  42. Wen X, Zeng Z, Du C, Huang D, Zeng G, Xiao R, Lai C, Xu P, Zhang C, Wan J, Hu L, Yin L, Zhou C, Deng R (2019) Immobilized laccase on bentonite-derived mesoporous materials for removal of tetracycline. Chemosphere 222:865–871. https://doi.org/10.1016/j.chemosphere.2019.02.020

    Article  PubMed  CAS  Google Scholar 

  43. Liu S-T, Zhang A-B, Yan K-K, Ye Y, Chen X-G (2014) Microwave-enhanced catalytic degradation of methylene blue by porous MFe2O4 (M = Mn, Co) nanocomposites: pathways and mechanisms. Sep Purif Technol 135:35–41. https://doi.org/10.1016/j.seppur.2014.07.049

    Article  CAS  Google Scholar 

  44. Milyutin VV, Mikheev SV, Gelis VM, Kononenko OA (2009) Coprecipitation of microamounts of cesium with precipitates of transition metal ferrocyanides in alkaline solutions. Radiochemistry 51:295–297. https://doi.org/10.1134/s106636220903014x

    Article  CAS  Google Scholar 

  45. Silliková V, Dulanská S, Horník M, Jakubčinová J, Mátel Ľ (2020) Impregnated fly ash sorbent for cesium-137 removal from water samples. J Radioanal Nucl Chem 324:1225–1236. https://doi.org/10.1007/s10967-020-07132-6

    Article  CAS  Google Scholar 

  46. Mohammadi S, Faghihian H (2019) Elimination of Cs+ from aquatic systems by an adsorbent prepared by immobilization of potassium copper hexacyanoferrate on the SBA-15 surface: kinetic, thermodynamic, and isotherm studies. Environ Sci Pollut Res 26:12055–12070. https://doi.org/10.1007/s11356-019-04623-2

    Article  CAS  Google Scholar 

  47. Attallah MF, Abd-Elhamid AI, Ahmed IM, Aly HF (2018) Possible use of synthesized nano silica functionalized by Prussian blue as sorbent for removal of certain radionuclides from liquid radioactive waste. J Mol Liq 261:379–386. https://doi.org/10.1016/j.molliq.2018.04.050

    Article  CAS  Google Scholar 

  48. Yang H, Sun L, Zhai J, Li H, Zhao Y, Yu H (2014) In situ controllable synthesis of magnetic Prussian blue/graphene oxide nanocomposites for removal of radioactive cesium in water. J Mater Chem A 2:326–332. https://doi.org/10.1039/c3ta13548a

    Article  CAS  Google Scholar 

  49. Ma G, Zheng Y, Zhou Y, Gao L, Liu B, Yu X, Zhang L (2021) Ammonium molybdophosphate functionalized copolymer micelles for efficient Cs+ adsorption. J Polym Res. https://doi.org/10.1007/s10965-021-02817-2

    Article  Google Scholar 

  50. Pintor AMA, Vieira BRC, Boaventura RAR, Botelho CMS (2020) Removal of antimony from water by iron-coated cork granulates. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2019.116020

    Article  Google Scholar 

  51. Avramenko VA, Bratskaya SY, Egorin AM, Tsaryov SA, Sergienko VI (2008) Colloid-stable nanosized selective sorbents for decontamination of bulk materials. Dokl Chem 422:251–254. https://doi.org/10.1134/s0012500808100030

    Article  CAS  Google Scholar 

  52. Szoke S, Patzay G, Weiser L (2003) Development of selective cobalt and cesium removal from the evaporator concentrates of the PWR Paks. Radiochim Acta 91:229–232. https://doi.org/10.1524/ract.91.4.229.19973

    Article  CAS  Google Scholar 

  53. Long H, Wu P, Zhu N (2013) Evaluation of Cs+ removal from aqueous solution by adsorption on ethylamine-modified montmorillonite. Chem Eng J 225:237–244. https://doi.org/10.1016/j.cej.2013.03.088

    Article  CAS  Google Scholar 

  54. Guo Y, Lu Y, Liu C, Wang J, Ruan J, Li X, Han J, Xie J (2021) Effect of ZnAl2O4 crystallization on ion-exchange properties in aluminosilicate glass. J Alloy Compd. https://doi.org/10.1016/j.jallcom.2020.156891

    Article  Google Scholar 

  55. Ding DH, Zhao YX, Yang SJ, Shi WS, Zhang ZY, Lei ZF, Yang YN (2013) Adsorption of cesium from aqueous solution using agricultural residue - walnut shell: equilibrium, kinetic and thermodynamic modeling studies. Water Res 47:2563–2571. https://doi.org/10.1016/j.watres.2013.02.014

    Article  PubMed  CAS  Google Scholar 

  56. Miharaa Y, Sikder MT, Yamagishi H, Sasaki T, Kurasaki M, Itoh S, Tanaka S (2016) Adsorption kinetic model of alginate gel beads synthesized micro particle-prussian blue to remove cesium ions from water. J Water Process Eng 10:9–19. https://doi.org/10.1016/j.jwpe.2016.01.001

    Article  Google Scholar 

  57. Haas PA (1993) A review of information on ferrocyanide solids for removal of cesium from solutions. Sep Sci Technol 28:2479–2506. https://doi.org/10.1080/01496399308017493

    Article  CAS  Google Scholar 

  58. Hong Y, Cha BJ, Kim YD, Seo HO (2019) Mesoporous SiO2 particles combined with Fe oxide nanoparticles as a regenerative methylene blue adsorbent. ACS Omega 4:9745–9755. https://doi.org/10.1021/acsomega.9b00726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This paper was supported by the project titled “The National Key Project of Research and Development Plan” (Grant No. 2016YFC1402504). Thanks for the funding source of this research and the research platform provided by Wuhan University of technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Li.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Li, Y., Fu, Y. et al. Preparation of SiO2-KMCHCF composites and its adsorption characteristics for Cs+ and Sb(V) ions. J Radioanal Nucl Chem 331, 4211–4226 (2022). https://doi.org/10.1007/s10967-022-08483-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08483-y

Keywords

Navigation