Skip to main content
Log in

A sustainable approach to Gilloy-shoot extract-mediated synthesis of magnetite nanoparticles: isotherm and kinetic study of U(VI) removal

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Magnetically modified nanoparticles have been demonstrated to be quite successful at re-mediating wastewater in recent experiments. The current study presents a simple, greener method for making Gilloy (Tinospora Cordifolia) shoot extract-reduced magnetic nanoparticles (GS@MNPs) and analyses their ability to adsorb uranium (VI) ions. Ultraviolet–visible spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and Scanning electron microscopy was among the techniques used to characterize the prepared GS@MNPs. Various analytical parameters such as contact time (5 min), pH (7.0), GS@MNPs (0.001 g), and U(VI) dosage (0.2 mg/L) were all optimized to their best possible values. According to the findings, the adsorption process follows Langmuir isotherm with 93.54 mg/g adsorption efficiency and pseudo-second-order kinetics. Reusability and recovery of GS@MNPs were also investigated in this study. The prepared GS@MNPs were discovered to be a simple, quick, and environmentally friendly adsorbent for removing U(VI) ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lübken U, Mauch C (2011) Uncertain environments: natural hazards, risk and insurance in historical perspective. Environment and History 17(1):1–12

    Article  Google Scholar 

  2. Wu G, Kang GH, Zhang X, Shao H, Chu L, Ruan C (2009) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater 174:1–3

    Article  PubMed  Google Scholar 

  3. Ashfaq A, Saadia A (2011) Potential of algae as a biosorbent for the removal of heavy metals. Ecol Environ Conserv 17(1):49–53

    CAS  Google Scholar 

  4. Muzzarelli RAA (2010) Potential of chitin/chitosan-bearing materials for uranium recovery: an interdisciplinary review. Carbohyd Polym 84(1):54–63

    Article  Google Scholar 

  5. Vodyanitskii YN (2011) Chemical aspects of uranium behaviour in soils: a review. Eurasian Soil Sci 44:862

    Article  CAS  Google Scholar 

  6. Gavrilescu M, Pavel LV, Cretescu I (2008) Characterization and remediation of soils contaminated with uranium. J Hazard Mater 163:475

    Article  PubMed  Google Scholar 

  7. Wikipedia Contributors (2022) Uranium. In: Wikipedia. Accessed 2 Mar 2022. https://en.wikipedia.org/wiki/Uranium

  8. Ribera D, Labrot F, Tisnerat G, Narbonne JF (1995) Uranium in the environment: occurrence, transfer, and biological effects. Rev Environ Contam Toxicol 146:53

    Google Scholar 

  9. CDC Radiation Emergencies (2022) Accessed 2 Mar 2022. https://www.cdc.gov/nceh/radiation/emergencies/isotopes/uranium.htm

  10. Taylor DM, Taylor SK (1997) Environmental uranium and human health. Rev Environ Health 12:147

    Article  CAS  PubMed  Google Scholar 

  11. Kurttio P, Komulainen H, Leino A, Salonen L, Auvinen A, Saha H (2004) Bone as a possible target of chemical toxicity of natural uranium in drinking water. Environ Health Perspect 113:68

    Article  PubMed Central  Google Scholar 

  12. Canu IG, Ellis ED, Tirmarche M (2008) Cancer risk in nuclear workers occupationally exposed to uranium—emphasis on internal exposure. Health Phys 94:1

    Article  PubMed  Google Scholar 

  13. Calì E, Qi J, Preedy O, Chen S, Boldrin D, Branford WR, Vandeperre L, Ryan MP (2018) Functionalised magnetic nanoparticles for uranium adsorption with ultra-high capacity and selectivity. J Mater Chem A 6:3063–3073

    Article  Google Scholar 

  14. Gangadhar G, Maheshwari U, Gupta S (2012) Application of nanomaterials for the removal of pollutants from effluent streams nanosci. Nanotechnol Asia 2:140

    Article  CAS  Google Scholar 

  15. Environmental Protection Agency, Nanotechnology White Paper, USEPA 100/B-07/001 (2007)

  16. Nurchi VN, Crisponi G, Villaescusa I (2010) Adsorptive removal of uranium from wastewater: a review. Coord Chem Rev 254:2181

    Article  CAS  Google Scholar 

  17. Li X, Xu H, Chen ZS, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomate 2011:1–16

    Google Scholar 

  18. Jayaseelana C, Rahumana AA, Kirthi AV, Marimuthua S, Santhoshkumara T, Bagavana A et al (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochimica Acta Part A 90:78–84

    Article  Google Scholar 

  19. Gopinath K, Shanmugam VK, Gowri S, Senthilkumar V, Kumaresan S, Arumugam A (2014) Antibacterial activity of ruthenium nanoparticles synthesized using Gloriosa superba L. leaf extract. J Nanostruct Chem. https://doi.org/10.1007/s40097-014-0083-4

    Article  Google Scholar 

  20. Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22:577–583

    Article  CAS  PubMed  Google Scholar 

  21. Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31:346–356

    Article  CAS  PubMed  Google Scholar 

  22. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650

    Article  CAS  Google Scholar 

  23. Tang SCN, Lo IMC (2013) Magnetic nanoparticle: essential factors for sustainable environmental applications. Water Res 47:2613–2632

    Article  CAS  PubMed  Google Scholar 

  24. Šafařı́kováŠafařı́k MI (1999) Magnetic solid-phase extraction. J Magn Mater 194:108–112

    Article  Google Scholar 

  25. Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244

    Article  CAS  Google Scholar 

  26. Pylypchuk IV, Kołodyńska D, Kozioł M, Gorbyk PP (2016) Gd-DTPA adsorption on chitosan/magnetite nanocomposites. Nanoscale Res Lett 11(168):1–10

    CAS  Google Scholar 

  27. Kołodyńska D, Gęca M, Pylypchuk IV, Hubicki Z (2016) Development of new effective sorbents based on nanomagnetite. Nanoscale Res Lett 11(152):1–10

    Google Scholar 

  28. Karlsson HL, Cronholm P, Gustafsson J, Möller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732

    Article  CAS  PubMed  Google Scholar 

  29. Wang Z, Wang Y, Yao C (2021) Highly efficient removal of uranium (VI) from aqueous solution using the polyethyleneimine modified magnetic chitosan. J Polym Environ 30:855–866

    Article  Google Scholar 

  30. Zhao S, Feng T, Feng L et al (2022) Rapid recovery of uranium with magnetic-single-molecular amidoxime adsorbent. Sep Purif Technol 287:120524. https://doi.org/10.1016/j.seppur.2022.120524

    Article  CAS  Google Scholar 

  31. Zhang J, Wang D, Cao R, Li J (2022) Hollow Fe3O4 nanospheres covered by phosphate-modified layered double hydroxides for the removal of uranium (VI) from water and soil. Sep Purif Technol 288:120688

    Article  CAS  Google Scholar 

  32. Amesh P, Venkatesan AK, Suneesh K et al (2022) Succinic acid functionalized magnetic mesoporous silica for the magnetic assisted separation of uranium from aqueous. J Radioanal Nucl Chem 16:1–15. https://doi.org/10.1007/s10967-022-08336-8

  33. Altaf S, Zafar R, Zaman WQ et al (2021) Removal of levofloxacin from aqueous solution by green synthesized magnetite (Fe3O4) nanoparticles using Moringa olifera: Kinetics and reaction mechanism analysis. Ecotoxicol Environ Saf 226:112826

    Article  CAS  PubMed  Google Scholar 

  34. Akpomie KG, Ghosh S, Gryzenhout M, Conradie J (2021) Ananas comosus peel–mediated green synthesized magnetite nanoparticles and their antifungal activity against four filamentous fungal strains. Biomass Conver Bioref. https://doi.org/10.1007/S13399-021-01515-9

    Article  Google Scholar 

  35. Mane-Gavade S, Malgave A, Nikam G et al (2021) Green synthesis of magnetite nanoparticles (Fe 3 O 4 NPs) using Acacia concinna fruit extract and their antibacterial activity. Macromol Symp 400:2100140

    Article  CAS  Google Scholar 

  36. Prakash LV, Gopinath A, Gandhimathi R et al (2021) Ultrasound aided heterogeneous fenton degradation of Acid Blue 15 over green synthesized magnetite nanoparticles. Sep Purif Technol 266:118230. https://doi.org/10.1016/j.seppur.2020.118230

    Article  CAS  Google Scholar 

  37. Kashyap K, Khan F, Verma DK, Agrawal S (2022) Effective removal of uranium from aqueous solution by using cerium oxide nanoparticles derived from citrus limon peel extract. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-021-08138-4

    Article  Google Scholar 

  38. Chandra C, Khan F (2020) Nano-scale zerovalent copper: green synthesis, characterization and efficient removal of uranium. J Radioanal Nucl Chem 324:589–597

    Article  CAS  Google Scholar 

  39. IeV P, Kołodyńska D, Kozioł M, Gorbyk PP (2016) Gd-DTPA adsorption on chitosan/magnetite nanocomposites. Nanoscale Res Lett 11(168):1–10

    Google Scholar 

  40. Galhoum AA, Mahfouz MG, Atia AA, Abdel-Rehem ST, Gomaa NA, Vincent T, Guibal E (2015) Amino acid functionalized chitosan magnetic nanobased particles for uranyl sorption. Ind Eng Chem Res 54:12374–12385

    Article  CAS  Google Scholar 

  41. Singer DM, Chatman SM, Ilton ES, Rosso KM, Banfield JF, Waychunas GA (2012) U(VI) sorption and reduction kinetics on the magnetite (111) surface. Environ Sci Technol 46:3821–3830

    Article  CAS  PubMed  Google Scholar 

  42. Zhang X, Wang J, Li R, Dai Q, Gao R, Liu Q, Zhang M (2013) Preparation of Fe3O4@C@layered double hydroxide composite for magnetic separation of uranium. Ind Eng Chem Res 52:10152–10159

    Article  CAS  Google Scholar 

  43. Wang L, Yang Z, Gao J, Xu K, Gu H, Zhang B, Zhang X, Xu B (2006) A biocompatible method of decorporation: bisphosphonate-modified magnetite nanoparticles to remove uranyl ions from blood. J Am Chem Soc 128:13358–13359

    Article  CAS  PubMed  Google Scholar 

  44. Sadeghi S, Azhdari H, Arabi H, Moghaddam AZ (2012) Surface modified magnetic Fe3O4 nanoparticles as a selective sorbent for solid phase extraction of uranyl ions from water samples. J Hazard Mater 215–216:208–216

    Article  PubMed  Google Scholar 

  45. Zhao Y, Li J, Zhao L, Zhang S, Huang Y, Wu X, Wang X (2014) Synthesis of amidoxime-functionalized Fe3O4@SiO2 core–shell magnetic microspheres for highly efficient sorption of U(VI). Chem Eng J 235:275–283

    Article  CAS  Google Scholar 

  46. Sayin S, Yilmaz M (2011) Synthesis of a new calixarene derivative and its immobilization onto magnetic nanoparticle surfaces for excellent extractants toward Cr (VI), As(V), and U(VI). J Chem Eng Data 56:2020–2029

    Article  CAS  Google Scholar 

  47. Rezaei A, Khani H, Masteri-Farahani M, Rofouei MK (2012) A novel extraction and preconcentration of ultra-trace levels of uranium ions in natural water samples using functionalized magnetic-nanoparticles prior to their determination by inductively coupled plasma-optical emission spectrometry. Anal Methods 4:4107–4114

    Article  CAS  Google Scholar 

  48. Wikipedia Contributors (2022) Tinospora cordifolia. In: Wikipedia. https://en.wikipedia.org/wiki/Tinospora_cordifolia

  49. Rathi D, Balasubramanian P (2016) Licensed under creative commons attribution CC BY phytochemical compound analysis of tinospora cordifolia by GC-MS method. Int J Sci Res 7:1115–1118

    Google Scholar 

  50. Wang G, Liu J, Wang X, Xie Z, Deng N (2009) Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan. J Hazard Mater 168:1053–1058

    Article  CAS  PubMed  Google Scholar 

  51. Raffa V, Riggio C, Calatayud H et al (2012) Poly-l-lysine-coated magnetic nanoparticles as intracellular actuators for neural guidance. Int J Nanomedicine. https://doi.org/10.2147/IJN.S28460

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zou J, Peng YG (2014) Tang YY (2014) A facile bi-phase synthesis of Fe3O4@SiO2 core– shell nanoparticles with tunable film thicknesses. RSC Adv 4:9693

    Article  CAS  Google Scholar 

  53. Liu F, Niu F, Peng N et al (2015) Synthesis, characterization, and application of Fe3O4@SiO2–NH2nanoparticles. RSC Adv 5:18128–18136

    Article  CAS  Google Scholar 

  54. Eldridge DS, Crawford RJ, Harding IH (2015) The role of metal ion-ligand interactions during divalent metal ion adsorption. J Colloid Interface Sci 454:20–26

    Article  CAS  PubMed  Google Scholar 

  55. Homola A, James R (1977) Preparation and characterization of amphoteric polystyrene latices. J Colloid Interface Sci 59(1):123–134. https://doi.org/10.1016/0021-9797(77)90346-0

    Article  CAS  Google Scholar 

  56. Crini G, Peindy HN, Gimbert F, Robert C (2007) Removal of C.I. Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: Kinetic and equilibrium studies C. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2006.06.018

    Article  Google Scholar 

  57. Zacar MO (2005) Adsorption of metal complex dyes from aqueous solutions by pine sawdust Engil I.A.S. Bioresour Technol 96:791

    Article  Google Scholar 

  58. Kannan N, Meenakshisundaram M (2002) Adsorption of congo red on various activated carbons. A comparative study M. Water Air Soil Pollut. https://doi.org/10.1023/A:1015551413378

    Article  Google Scholar 

  59. Xiao-teng Z, Dong-mei J, Yi-qun X, Jun-chang C, Shuai H, Liangshu X (2019) Adsorption of uranium (VI) from aqueous solution by modifed rice stem. J Chem 2019:1–10

    Article  Google Scholar 

  60. Zare F, Ghaedi M, Daneshfar A, Agarwal S, Tyagi I, Saleh TA, Gupta VK (2015) Efcient removal of radioactive uranium from solvent phase using AgOH–MWCNTs nanoparticles: kinetic and thermodynamic study. Chem Eng J 273:296–306

    Article  CAS  Google Scholar 

  61. Humelnicu D, Popovici E, Dvininov E, Mita C (2008) Study on the retention of uranyl ions on modified clays with titanium oxide. J Radioanal Nucl Chem 279:131–136

    Article  Google Scholar 

  62. Shuibo X, Chun Z, Xinghuo Z et al (2009) Removal of uranium (VI) from aqueous solution by adsorption of hematite. J Environ Radioact 100:162–166

    Article  PubMed  Google Scholar 

  63. Han R, Zou W, Wang Y, Zhu L (2007) Removal of uranium (VI) from aqueous solutions by manganese oxide coated zeolite: discussion of adsorption isotherms and pH effect. J Environ Radioact 93:127–143

    Article  CAS  PubMed  Google Scholar 

  64. Yusan SD, Akyil S (2008) Sorption of uranium (VI) from aqueous solutions by akaganeite. J Hazard Mater 160:388–395

    Article  CAS  PubMed  Google Scholar 

  65. Donat R (2009) The removal of uranium (VI) from aqueous solutions onto natural sepiolite. J Chem Thermodyn 41:829–835

    Article  CAS  Google Scholar 

  66. Wanga J-S, Penga R-T, Yanga J-H, Liu Y-C, Xin-jiang Hu (2011) Preparation of ethylenediamine-modified magnetic chitosan complex for adsorption of uranyl ions. Carbohyd Polym 84:1169–1175

    Article  Google Scholar 

  67. Evans HT (1963) Uranyl ion coordination. Science 141(3576):154–158. https://doi.org/10.1126/science.141.3576.154

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are pleased to the Director, National institute of Technology, Raipur for providing laboratory and library facilities, and to CIF-IIT Bhilai, Raipur for providing FE-SEM facility. One of the authors, Aditya Narayan Tiwari gratefully acknowledges the UGC [F.No.16-6(DEC.2018)/2019 (NET/CSIR)] for fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavita Tapadia.

Ethics declarations

Conflict of interest

There is no any conflict of interest by the authors to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, A.N., Tapadia, K., Thakur, C. et al. A sustainable approach to Gilloy-shoot extract-mediated synthesis of magnetite nanoparticles: isotherm and kinetic study of U(VI) removal. J Radioanal Nucl Chem 331, 3819–3833 (2022). https://doi.org/10.1007/s10967-022-08441-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08441-8

Keywords

Navigation