Skip to main content
Log in

Cladonia verticillaris (lichen) can exhibit defense mechanisms against Rn-222 under controlled conditions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This study aimed to evaluate the effects of the Rn-222 progeny on the lichen Cladonia verticillaris under controlled conditions. The results showed resistance of the species, and few changes in the level of photosynthetic pigments. Blockage in the biosynthetic route of the major phenolic compound fumarprotocetraric acid was also identified, and accumulation of protocetraric acid, as defense mechanism against external pollutants, to maintain thallus vitality. The accumulation of the 210Pb and 226Ra, radioisotopes estimated from the daughter of 214Bi and 214Pb, was incipient. C. verticillaris showed resistance to 222Rn, with accumulation of intermediary phenolic only at the begining of experiments.

Graphical Abstract Schematic model of exposure of Cladonia verticillaris (lichen) to 222Rn under controlled conditions.

Highlights

Cladonia verticillaris was resistant to high doses of radiation, showing stability in the production of chlorophyll.

Blockage in the biosynthesis of fumarprotocetraric acid was identified, causing accumulation of protocetraric acid, as a form of protection against the activity of Rn-222.

Daughters of Rn-222 were determined, but the species reported low accumulation,  and ability of self-protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The authors declare that all data generated or analyzed during this study are included in the text submitted for publication.

Code Availability

Not applicable.

References

  1. Silva AA (2007) Seasonal variations of Pb214 and Po210 concentrations in the surface air in São José dos Campos (23.18° S, 45.89° W, 600 m asl) Brazil. Atmos Res 86(1):88–92. https://doi.org/10.1016/j.atmosres.2007.05.002

    Article  CAS  Google Scholar 

  2. Das B (2021) Radon induced health effects: A survey report. Indian J Sci Technol 14:481–507. https://doi.org/10.17485/IJST/v14i5.1049

    Article  CAS  Google Scholar 

  3. Vocht F, Suderman M, Ruano-Ravina A et al (2019) Residential exposure to radon and DNA methylation across the lifecourse: an exploratory study in the ALSPAC birth cohort. Wellcome Open Res 4:3. https://doi.org/10.12688/wellcomeopenres.14991.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dighton J, Tugay T, Zhdanova N (2008) Fungi and ionizing radiation from radionuclides: Fungi and ionizing radiation. FEMS Microbiol Lett 281:109–120. https://doi.org/10.1111/j.1574-6968.2008.01076.x

    Article  CAS  PubMed  Google Scholar 

  5. Conti ME, Cecchetti G (2001) Biological monitoring: lichens as bioindicators of air pollution assessment — a review. Environ Pollut 114:471–492. https://doi.org/10.1016/S0269-7491(00)00224-4

    Article  CAS  PubMed  Google Scholar 

  6. Sloof JE, Wolterbeek BT (1992) Lichens as biomonitors for radiocaesium following the chernobyl accident. J Environ Radioact 16(3):229–242. https://doi.org/10.1016/0265-931X(92)90002-B

    Article  CAS  Google Scholar 

  7. Jeran Z, Byrne AR, Batič F (1995) Transplanted Epiphytic Lichens as Biomonitors of Air-Contamination by Natural Radionuclides Around the Žirovski VRH Uranium Mine, Slovenia. The Lichenologist 27(5):375–385. https://doi.org/10.1006/lich.1995.0035

    Article  Google Scholar 

  8. Kirchner G, Daillant O (2002) The potential of lichens as long-term biomonitors of natural and artificial radionuclides. Environ Pollut 120(1):145–150. https://doi.org/10.1016/S0269-7491(02)00139-2

    Article  CAS  PubMed  Google Scholar 

  9. Leonardo L, Damatto SR, Mazzilli BP, Saiki M, Paschoa AS, Steinhäusler F (2008) The use of lichen (Canoparmelia texana) as biomonitor of atmospheric deposition of natural radionuclides from U-238 and Th-232 series. In AIP Conference Proceedings 1034: 494–497. Presented at the THE NATURAL RADIATION ENVIRONMENT: 8th International Symposium (NRE VIII), Buzios, Rio de Janeiro (Brazil): AIP. https://doi.org/10.1063/1.2991275

  10. Dohi T, Ohmura Y, Yoshimura K, Sasaki T, Fujiwara K, Kanaizuka S et al (2021) Radiocaesium accumulation capacity of epiphytic lichens and adjacent barks collected at the perimeter boundary site of the Fukushima Dai-ichi Nuclear Power Station. PLoS ONE 16(5):e0251828. https://doi.org/10.1371/journal.pone.0251828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bačkorová M, Jendželovský R, Kello M, Bačkor M, Mikeš J, Fedoročko P (2012) Lichen secondary metabolites are responsible for induction of apoptosis in HT-29 and A2780 human cancer cell lines. Toxicol In Vitro 26(3):462–468. https://doi.org/10.1016/j.tiv.2012.01.017

    Article  CAS  PubMed  Google Scholar 

  12. Beckett RP, Minibayeva F, Solhaug KA, Roach T (2021) Photoprotection in lichens: adaptations of photobionts to high light. The Lichenologist 53(1):21–33. https://doi.org/10.1017/S0024282920000535

    Article  Google Scholar 

  13. Meeßen J, Backhaus T, Brandt A, Raguse M, Böttger U, de Vera JP, de la Torre R (2017) The Effect of High-Dose Ionizing Radiation on the Isolated Photobiont of the Astrobiological Model Lichen Circinaria gyrosa. Astrobiology 17(2):154–162. https://doi.org/10.1089/ast.2015.1453

    Article  CAS  PubMed  Google Scholar 

  14. Silva HPB, Colaço W (2011) Effect of gamma and ultraviolet radiation on Cladonia verticillaris. (Raddi) FR (lichen) colleted in different environments. Doctoral Thesis, Federal University of Pernambuco- UFPE [in Portuguese]. https://repositorio.ufpe.br/handle/123456789/9766

  15. Santiago R, Martins MCB, Vilaça MD, Barros LFB, Nascimento T, Silva NH et al (2018) Phytochemical and biological evaluation of metabolites produced by alginate-immobilized Bionts isolated from the lichen Cladonia substellata Vain. Fitoterapia 131:23–34. https://doi.org/10.1016/j.fitote.2018.10.001

    Article  CAS  PubMed  Google Scholar 

  16. Shweikani R, Raja G (2005) Design, construct and test of a calibration radon chamber. Radiat Meas 40(2–6):316–319. https://doi.org/10.1016/j.radmeas.2005.05.010

    Article  CAS  Google Scholar 

  17. Da Silva BF, Pereira IMC, de Melo JC, Martins MCB, Barbosa MO, Silva AKO et al (2021) Cladonia verticillaris (lichen) indicates negative impacts derived from the combustion of biodiesel blends: an alert for the environmental management for biofuels use. Environ Monit Assess 193(12):809. https://doi.org/10.1007/s10661-021-09610-0

    Article  CAS  PubMed  Google Scholar 

  18. Pompelli MF, França SC, Tigre RC, Oliveira MT, Sacilot M, Pereira EC (2013) Spectrophotometric determinations of chloroplastidic pigments in acetone, ethanol and dimethylsulphoxide. Revista Brasileira de Biociências 11:52–58. http://www.ufrgs.br/seerbio/ojs/index.php/rbb/article/view/2281

    Google Scholar 

  19. Vernon LP (1960) Spectrophotometric Determination of Chlorophylls and Pheophytins in Plant Extracts. Anal Chem 32(9):1144–1150. https://doi.org/10.1021/ac60165a029

    Article  CAS  Google Scholar 

  20. Legaz ME, Vicente C (1983) Endogenous Inactivators of Arginase, l-Arginine Decarboxylase, and Agmatine Amidinohydrolase in Evernia prunastri Thallus. Plant Physiol 71(2):300–302. https://doi.org/10.1104/pp.71.2.300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Santiago R, Martins MC, Nascimento T, Barros LF, Vilaça M, Falcão EP et al (2020) Production of Bioactive Lichen Compounds by Alginate-Immobilized Bionts Isolated from Cladonia verticillaris: An in Vitro Study. J Plant Stud 9(1):43. https://doi.org/10.5539/jps.v9n1p43

    Article  CAS  Google Scholar 

  22. Tauhata L, Vianna MECM, de Oliveira AE, Ferreira AC, Bragança MJC, Clain AF, Faria RQ (2006) The Brazilian National Intercomparison Program (PNI/IRD/CNEN): evaluation of 15 years of data. J Environ Radioact 86(3):384–390. https://doi.org/10.1016/j.jenvrad.2005.10.002

    Article  CAS  PubMed  Google Scholar 

  23. Paiva JDS, Sousa EE, Farias EEG, Carmo AM, Souza EM, França EJ (2016) Natural radionuclides in mangrove soils from the State of Pernambuco, Brazil. J Radioanal Nucl Chem 307:883–889. https://doi.org/10.1007/s10967-015-4446-1

    Article  CAS  Google Scholar 

  24. Ferreira EB, Cavalcanti PP, Nogueira DA (2021) Package ‘ExpDes.pt’. https://cran.r-project.org/web/packages/ExpDes.pt/ExpDes.pt.pdf

  25. Peterson BG, Carl P, Boudt K, Bennett R, Ulrich J, Zivot E, Cornilly D (2020) Package ‘PerformanceAnalytics’. https://cran.r-project.org/web/packages/PerformanceAnalytics/PerformanceAnalytics.pdf

  26. Bačkor M, Zetíková J (2003) Effects of copper, cobalt and mercury on the chlorophyll content of lichens Cetraria islandica and Flavocetraria cucullata. Hattori Bot Lab 93:175–187. https://doi.org/10.18968/jhbl.93.0_175

    Article  Google Scholar 

  27. Silva IG, de Oliveira Nunes CR, de Oliveira Costa R, Pereira EC, Canela MC (2021) Formaldehyde exposure and atmospheric biomonitoring with lichen Cladonia verticillaris in an anatomy laboratory. Environ Sci Pollut Res 28(35):48569–48580. https://doi.org/10.1007/s11356-021-14036-9

    Article  CAS  Google Scholar 

  28. Goga M, Elečko J, Marcinčinová M, Ručová D, Bačkorová M, Bačkor M (2018) Lichen Metabolites: An Overview of Some Secondary Metabolites and Their Biological Potential. In J. M. Mérillon, K. G. Ramawat (ed) Bioactive Molecules in Food, pp 1–36. https://doi.org/10.1007/978-3-319-76887-8_57-1

  29. Mota Filho FO, Pereira EC, Lima ES, Silva NH, Figueiredo RCB (2007) Influence of atmospheric pollutants in Belo Jardim (PE) using Cladonia verticillaris (lichen) as biomonitor. Química Nova 30(5):1072–1076 [in Portuguese]. https://doi.org/10.1590/S0100-40422007000500004

    Article  CAS  Google Scholar 

  30. Cunha HPA, Silva JM, Mota Filho FO, Silva NH, Pereira EC (2007) Cladonia verticillaris (Raddi) Fr., for diagnosis of the salubrity of the decurrent air of the limestone extraction and transformation activities in Vertente do Lério, Pernambuco (Brazil). Caminhos de Geografia 8(22): 49–65 [in Portuguese]. https://1library.org/document/qmwr6d7z-verticillaris-diagnostico-salubridade-beneficiamento-pernambuco-verticillaristransformation-pernambuco.htm

    Google Scholar 

  31. Albuquerque PTF, Frédou T, Arruda GN, Filho CAS, Nascimento AF, da Silva MJ, De França EJ (2019) Tracking Hg historical inputs by Pb-210 geochronology for the Itapessoca Estuarine Complex, Pernambuco, Brazil. J Radioanal Nucl Chem 321(3):875–883. https://doi.org/10.1007/s10967-019-06665-9

    Article  CAS  Google Scholar 

  32. Sert E, Uğur A, Özden B, Saç MM, Camgöz B (2011) Biomonitoring of 210Po and 210Pb using lichens and mosses around coal-fired power plants in Western Turkey. J Environ Radioact 102(6):535–542. https://doi.org/10.1016/j.jenvrad.2011.02.005

    Article  CAS  PubMed  Google Scholar 

  33. Persson BRR, Holm E (2011) Polonium-210 and lead-210 in the terrestrial environment: a historical review. J Environ Radioact 102(5):420–429. https://doi.org/10.1016/j.jenvrad.2011.01.005

    Article  CAS  PubMed  Google Scholar 

  34. Vosel Y, Belyanin D, Melgunov M, Vosel S, Mezina K, Kropacheva M et al (2021) Accumulation of natural radionuclides (7Be, 210Pb) and micro-elements in mosses, lichens and cedar and larch needles in the Arctic Western Siberia. Environ Sci Pollut Res 28(3):2880–2892. https://doi.org/10.1007/s11356-020-10615-4

    Article  CAS  Google Scholar 

  35. Rola K, Latkowska E, Myśliwa-Kurdziel B, Osyczka P (2019) Heavy-metal tolerance of photobiont in pioneer lichens inhabiting heavily polluted sites. Sci Total Environ 679:260–269. https://doi.org/10.1016/j.scitotenv.2019.05.002

    Article  CAS  PubMed  Google Scholar 

  36. Pawlik-Skowronska B, di Toppi LS, Favali MA, Fossati F, Pirszel J, Skowronski T (2002) Lichens respond to heavy metals by phytochelatin synthesis. New Phytol 156(1):95–102. https://doi.org/10.1046/j.1469-8137.2002.00498.x

    Article  CAS  Google Scholar 

  37. Pawlik-skowrońska B, Wójciak H, Skowroński T (2008) Heavy metal accumulation, resistance and physiological status of some epigeic and epiphytic lichens inhabiting Zn and Pb polluted areas. Pol J Ecol 56(2):195–207. https://www.researchgate.net/publication/237818535_Heavy_metal_accumulation_resistance_and_physiological_status_of_some_epigeic_and_epiphytic_lichens_inhabiting_Zn_and_Pb_polluted_areas

    Google Scholar 

  38. Silva HPDB, Colaco W, Pereira EC, Silva NHD (2010) Sensitivity of Cladonia substellata Vainio (lichen) to gamma irradiation and the consequent effect on limestone rocks. Int J Low Radiation 7(4):324. https://doi.org/10.1504/IJLR.2010.034919

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the financial support provided by the Fundação de Amparo à Ciência do Estado de Pernambuco (FACEPE) (Process number APQ-0785-3.09/14), by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Process numbers 311153/2019-4 and 307622/2019-3), and by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Finance Code 001).

Funding

This study had no financial support, except for grants from CAPES and FACEPE for students, and CNPq for researcher.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugênia C. Pereira.

Ethics declarations

Conflict of interest

/competing interests – The authors are required to disclose financial or non-financial interests that are directly or indirectly related to the work submitted for publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, B.F., da Silva, K.E.M., de Farias, E.E.G. et al. Cladonia verticillaris (lichen) can exhibit defense mechanisms against Rn-222 under controlled conditions. J Radioanal Nucl Chem 331, 3671–3679 (2022). https://doi.org/10.1007/s10967-022-08430-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08430-x

Keywords

Navigation