Skip to main content

A review of the migration of radioactive elements in clay minerals in the context of nuclear waste storage

Abstract

Clay is a widespread natural mineral. The review considers physical and chemical properties of clay minerals which are important in terms of geological high-level radioactive waste disposal (HLRW). The articles under consideration present that the properties of clay as a barrier material for the isolation of radionuclides are influenced by temperature, density (external pressure), ionic strength and pH of the solution, and the presence of cations of stable elements. These conditions are studied by both experimental and calculation methods. However, there are not enough research results in the publications for conditions close to those of HLRW geological disposal. The research status worldwide is introduced in detail, and at the end of the article, the future directions of the research on radionuclide diffusion in HLRW disposal are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Data availability

This article does not contain original data. All research data are referred to and appropriately cited in the reference section.

References

  1. Dlouhý Z (1982) Disposal of radioactive wastes - 1 radioactive wastes, vol 1. Studies in environmental science, The USA and Canada

  2. Dixon DA (2000) Porewater salinity and the development of swelling pressure in bentonite-based. Finland

  3. Wang J (2008) Geological disposal of high level radio active waste:progress and challenges. Eng Sci 10:58–65

    Google Scholar 

  4. Tsebakovskaya NS, Utkin SS, Kapyrin IV, Medyantsev NV, Shamina AV (2015) Overview of International Spent Nuclear Fuel and Radioactive Waste Disposal Practices. Moscow

  5. Cebakovskaya NS, Utkin SS, Linge II, Pron IA (2017) International experience in deep geological disposal of SNF and rRW. Part 1. Current progress in deep geological disposal of radioactive waste and spent fuel in european countries. Moscow: Nuclear Safety Institute

  6. Marques Fernandes M, Vér N, Baeyens B (2015) Predicting the uptake of Cs Co, Ni, Eu, Th and U on argillaceous rocks using sorption models for illite. Appl Geochem 59:189–199. https://doi.org/10.1016/j.apgeochem.2015.05.006

    CAS  Article  Google Scholar 

  7. Batuk DN, Shiryaev AA, Kalmykov SN, Zakharova EV, Teterin YA, Batuk ON, Myasoedov BF (2012) Interaction of U, Np, and Pu with colloidal SiO2 particles. Radiochemistry 54:537–541. https://doi.org/10.1134/s1066362212060045

    CAS  Article  Google Scholar 

  8. Fuller AJ, Shaw S, Peacock CL, Trivedi D, Small JS, Abrahamsen LG, Burke IT (2014) Ionic strength and pH dependent multi-site sorption of Cs onto a micaceous aquifer sediment. Appl Geochem 40:32–42. https://doi.org/10.1016/j.apgeochem.2013.10.017

    CAS  Article  Google Scholar 

  9. Ikeda T, Suzuki S, Yaita T (2015) Characterization of adsorbed alkali metal ions in 2:1 type clay minerals from first-principles metadynamics. J Phys Chem A 119:8369–8375. https://doi.org/10.1021/acs.jpca.5b05934

    CAS  Article  PubMed  Google Scholar 

  10. Fletcher P, Townsend RP (1982) Exchange of ammonium and sodium ions in synthetic faujasites. J Chem Soc Faraday Trans 1: Phys Chem Condens Phases 78:1741–1753. https://doi.org/10.1039/f19827801741

    CAS  Article  Google Scholar 

  11. Maher K, Bargar JR, Brown GE Jr (2013) Environmental speciation of actinides. Inorg Chem 52:3510–3532. https://doi.org/10.1021/ic301686d

    CAS  Article  PubMed  Google Scholar 

  12. Denning RG (2007) Electronic structure and bonding in actinyl ions and their analogs. J Phys Chem A 111:4125–4143. https://doi.org/10.1021/jp071061n

    CAS  Article  PubMed  Google Scholar 

  13. Fröhlich DR (2015) Sorption of neptunium on clays and clay minerals – a review. Clays Clay Miner 63:262–276. https://doi.org/10.1346/ccmn.2015.0630402

    Article  Google Scholar 

  14. Fröhlich DR, Kaplan U (2018) Sorption of Am(III) on clays and clay minerals: A review. J Radioanal Nucl Chem 318:1785–1795. https://doi.org/10.1007/s10967-018-6310-6

    CAS  Article  Google Scholar 

  15. Geckeis H, Lutzenkirchen J, Polly R, Rabung T, Schmidt M (2013) Mineral-water interface reactions of actinides. Chem Rev 113:1016–1062. https://doi.org/10.1021/cr300370h

    CAS  Article  PubMed  Google Scholar 

  16. Zavarin M, Powell BA, Bourbin M, Zhao P, Kersting AB (2012) Np(V) and Pu(v) ion exchange and surface-mediated reduction mechanisms on montmorillonite. Environ Sci Technol 46:2692–2698. https://doi.org/10.1021/es203505g

    CAS  Article  PubMed  Google Scholar 

  17. Turner DR (1998) Neptunium(V) sorption on montmorillonite: an experimental and surface complexation modeling study. Clays Clay Miner 46:256–269. https://doi.org/10.1346/CCMN.1998.0460305

    CAS  Article  Google Scholar 

  18. Tachi Y, Nakazawa T, Ochs M, Yotsuji K, Suyama T, Seida Y, Yamada N, Yui M (2010) Diffusion and sorption of neptunium(V) in compacted montmorillonite: effects of carbonate and salinity. Radiochim Acta 98:711–718. https://doi.org/10.1524/ract.2010.1772

    CAS  Article  Google Scholar 

  19. Choppin GR (2007) Actinide speciation in the environment. J Radioanal Nucl Chem 273:695–703. https://doi.org/10.1007/s10967-007-0933-3

    CAS  Article  Google Scholar 

  20. Clark DL, Hecker SS, Jarvinen GD, Neu MP, Morss LR, Edlestein NM, Fuger J (2006) Plutonium. In The Chemistry of the Actinide and Transactinide Elements, 3rd ed., vol 1. Springer: Amsterdam, The Netherlands, 2006

  21. Zhang TN, Xu XW, Dong L, Tan ZY, Liu CL (2017) Molecular dynamics simulations of uranyl species adsorption and diffusion behavior on pyrophyllite at different temperatures. Acta Physico-Chimica Sinica 33:2013–2021. https://doi.org/10.3866/PKU.WHXB201705113

    CAS  Article  Google Scholar 

  22. Khalili FI, NaH S, Shaybe MM (2013) Sorption of uranium(VI) and thorium(IV) by Jordanian Bentonite. J Chem 2013:1–13. https://doi.org/10.1155/2013/586136

    CAS  Article  Google Scholar 

  23. Joseph C, Van Loon LR, Jakob A, Steudtner R, Schmeide K, Sachs S, Bernhard G (2013) Diffusion of U(VI) in opalinus clay: influence of temperature and humic acid. Geochim Cosmochim Acta 109:74–89. https://doi.org/10.1016/j.gca.2013.01.027

    CAS  Article  Google Scholar 

  24. Novikov AP, Vlasova IE, Safonov AV, Ermolaev VM, Zakharova EV, Kalmykov SN (2018) Speciation of actinides in groundwater samples collected near deep nuclear waste repositories. J Environ Radioact 192:334–341. https://doi.org/10.1016/j.jenvrad.2018.07.007

    CAS  Article  PubMed  Google Scholar 

  25. Myshkin VF, Wang C, Tuksov IV, Khan VA, Eremeev RS (2022) Cation diffusion in a crystallite of mineral illite. At Energ 131:22–26. https://doi.org/10.1007/s10512-022-00831-1

    CAS  Article  Google Scholar 

  26. Hensen EJ, Smit B (2002) Why clays swell. J Phys Chem B 106:12664–12667. https://doi.org/10.1021/jp0264883

    CAS  Article  Google Scholar 

  27. Yusof MYM, Idris MI, Mohamed F, Nor MM (2020) Adsorption of radioactive element by clay: a review. IOP Conf Ser: Mater Sci Eng 785:12–20. https://doi.org/10.1088/1757-899X/785/1/012020

    Article  Google Scholar 

  28. Brigatti MF, Galán E, Theng BKG (2013) Structure and mineralogy of clay minerals. In: Handbook of clay science, developments in clay science vol 5. Elsevier, pp 21–81. doi: https://doi.org/10.1016/b978-0-08-098258-8.00002-x

  29. Ghasemi M, Sharifi M (2021) Effects of layer-charge distribution on swelling behavior of mixed-layer illite-montmorillonite clays: A molecular dynamics simulation study. J Mol Liq. https://doi.org/10.1016/j.molliq.2021.116188

    Article  Google Scholar 

  30. Liu XD, Lu XC (2006) A thermodynamic understanding of clay-swelling inhibition by potassium ions. Angew Chem Int Ed Engl 45:6300–6303. https://doi.org/10.1002/anie.200601740

    CAS  Article  PubMed  Google Scholar 

  31. Seppälä A, Puhakka E, Olin M (2016) Effect of layer charge on the crystalline swelling of Na+, K+ and Ca2+ montmorillonites: DFT and molecular dynamics studies. Clay Miner 51:197–211. https://doi.org/10.1180/claymin.2016.051.2.07

    CAS  Article  Google Scholar 

  32. Li X, Zhu C, Jia Z, Yang G (2018) Confinement effects and mechanistic aspects for montmorillonite nanopores. J Colloid Interface Sci 523:18–26. https://doi.org/10.1016/j.jcis.2018.03.082

    CAS  Article  PubMed  Google Scholar 

  33. Li X, Liu N, Zhang J (2019) Adsorption of cesium at the external surface of TOT type clay mineral: effect of the interlayer cation and the Hydrated State. J Phys Chem C 123:19540–19548. https://doi.org/10.1021/acs.jpcc.9b04035

    CAS  Article  Google Scholar 

  34. Li Y, Narayanan Nair AK, Kadoura A, Yang Y, Sun S (2019) Molecular simulation study of montmorillonite in contact with water. Ind Eng Chem Res 58:1396–1403. https://doi.org/10.1021/acs.iecr.8b05125

    CAS  Article  Google Scholar 

  35. Marsh AI, Williams LG, Lawrence JA (2021) The important role and performance of engineered barriers in a UK geological disposal facility for higher activity radioactive waste. Prog Nucl Energy. https://doi.org/10.1016/j.pnucene.2021.103736

    Article  Google Scholar 

  36. Ferrage E (2016) Investigation of the interlayer organization of water and ions in Smectite from the combined use of diffraction experiments and molecular simulations. a review of methodology, applications. And Perspect Clays Clay Miner 64:348–373. https://doi.org/10.1346/ccmn.2016.0640401

    CAS  Article  Google Scholar 

  37. Pusch R (2002) The buffer and backfill handbook. Part 1: Definitions, basic relationships, and laboratory methods. Sweden

  38. Cygan RT, Liang JJ, Kalinichev AG (2004) Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J Phys Chem B 108:1255–1266. https://doi.org/10.1021/jp0363287

    CAS  Article  Google Scholar 

  39. Kellner E (2007) Effects of variations in hydraulic conductivity and flow conditions on groundwater flow and solute transport in peatlands. Sweden

  40. Holmboe M, Bourg IC (2013) Molecular dynamics simulations of water and sodium diffusion in smectite interlayer nanopores as a function of pore size and temperature. J Phys Chem C 118:1001–1013. https://doi.org/10.1021/jp408884g

    CAS  Article  Google Scholar 

  41. Van Loon LR, Mibus J (2015) A modified version of Archie’s law to estimate effective diffusion coefficients of radionuclides in argillaceous rocks and its application in safety analysis studies. Appl Geochem 59:85–94. https://doi.org/10.1016/j.apgeochem.2015.04.002

    CAS  Article  Google Scholar 

  42. Gimmi T, Alt-Epping P (2018) Simulating Donnan equilibria based on the Nernst-Planck equation. Geochim Cosmochim Acta 232:1–13. https://doi.org/10.1016/j.gca.2018.04.003

    CAS  Article  Google Scholar 

  43. Moustafa SG, Schultz AJ, Kofke DA (2018) Effects of thermostatting in molecular dynamics on anharmonic properties of crystals: application to fcc Al at high pressure and temperature. J Chem Phys 149:124109. https://doi.org/10.1063/1.5043614

    CAS  Article  PubMed  Google Scholar 

  44. Kozaki T, Sato H, Sato S, Ohashi H (1999) Diffusion mechanism of cesium ions in compacted montmorillonite. Eng Geol 54:223–230. https://doi.org/10.1016/S0013-7952(99)00077-0

    Article  Google Scholar 

  45. Bourg IC, Sposito G, Bourg AC (2007) Modeling cation diffusion in compacted water-saturated sodium bentonite at low ionic strength. Environ Sci Technol 41:8118–8122. https://doi.org/10.1021/es0717212

    CAS  Article  PubMed  Google Scholar 

  46. Glaus MA, Baeyens B, Bradbury MH, Jakob A, Van Loon LR, Yaroshchuk A (2007) Diffusion of 22Na and 85Sr in montmorillonite: evidence of interlayer diffusion being the dominant pathway at high compaction. Environ Sci Technol 41:478–485. https://doi.org/10.1021/es061908d

    CAS  Article  PubMed  Google Scholar 

  47. Wampler JM, Krogstad EJ, Elliott WC, Kahn B, Kaplan DI (2012) Long-term selective retention of natural Cs and Rb by highly weathered coastal plain soils. Environ Sci Technol 46:3837–3843. https://doi.org/10.1021/es2035834

    CAS  Article  PubMed  Google Scholar 

  48. Mooney RW, Keenan AG, Wood LA (1952) Adsorption of water vapor by montmorillonite. II. Effect of exchangeable ions and lattice swelling as measured by X-ray diffraction. J Am Chem Soc 74:1374–1374. https://doi.org/10.1021/ja01126a002

    Article  Google Scholar 

  49. Norrish K (1954) The swelling of Montmorillonite. Discuss Faraday Soc 18:120–134. https://doi.org/10.1039/DF9541800120

    CAS  Article  Google Scholar 

  50. Nehdi ML (2014) Clay in cement-based materials: critical overview of state-of-the-art. Constr Build Mater 51:372–382. https://doi.org/10.1016/j.conbuildmat.2013.10.059

    Article  Google Scholar 

  51. Rotenberg B, Marry V, Dufrêche J-F, Malikova N, Giffaut E, Turq P (2007) Modelling water and ion diffusion in clays: a multiscale approach. C R Chim 10:1108–1116. https://doi.org/10.1016/j.crci.2007.02.009

    CAS  Article  Google Scholar 

  52. Crank J (1975) The mathematics of diffusion, 2nd edition, vol 15. Clarendon Press, Oxford

    Google Scholar 

  53. Li YH (1974) Diffusion of ions in sea water and in deep-sea sediments. Geochimiceat Comochiica Acta 38:703–714. https://doi.org/10.1016/0016-7037(74)90145-8

    CAS  Article  Google Scholar 

  54. Shackelford CD (1989) Diffusion of contaminants through waste containment barriers. Transp Res Rec 1219:169–182

    Google Scholar 

  55. Shackelford CD, Daniel DE (1991) Diffusion in saturated soil. i: background. Geotech Engrg 117:468–484. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:3(467)

    Article  Google Scholar 

  56. Malusis MA, Shackelford CD, Maneval JE (2012) Critical review of coupled flux formulations for clay membranes based on nonequilibrium thermodynamics. J Contam Hydrol 138–139:40–59. https://doi.org/10.1016/j.jconhyd.2012.06.003

    CAS  Article  PubMed  Google Scholar 

  57. Shackelford CD (1991) Laboratory diffusion testing for waste disposal - A review. J Contam Hydrol 7:177–217. https://doi.org/10.1016/0169-7722(91)90028-y

    CAS  Article  Google Scholar 

  58. Shackelford CD, Moore SM (2013) Fickian diffusion of radionuclides for engineered containment barriers: Diffusion coefficients, porosities, and complicating issues. Eng Geol 152:133–147. https://doi.org/10.1016/j.enggeo.2012.10.014

    Article  Google Scholar 

  59. Do NY, Lee SR (2006) Temperature effect on migration of Zn and Cd through natural clay. Environ Monit Assess 118:267–291. https://doi.org/10.1007/s10661-006-1501-y

    CAS  Article  PubMed  Google Scholar 

  60. Shackelford CD, Lu N, Malusis MA, Sample-Lord KM (2019) Research challenges involving coupled flows in geotechnical engineering. In: Geotechnical fundamentals for addressing new world challenges. Springer Series in Geomechanics and Geoengineering. pp 237–274. doi: https://doi.org/10.1007/978-3-030-06249-1_9

  61. Boulin PF, Bretonnier P, Gland N, Lombard JM (2012) Contribution of the steady state method to water permeability measurement in very low permeability porous media. Oil Gas Sci Technol Revue d’IFP Energ Nouvelles 67:387–401. https://doi.org/10.2516/ogst/2011169

    Article  Google Scholar 

  62. Yang X, Ge X, He J, Wang C, Qi L, Wang X, Liu C (2018) Effects of mineral compositions on matrix diffusion and sorption of (75)Se(IV) in Granite. Environ Sci Technol 52:1320–1329. https://doi.org/10.1021/acs.est.7b05795

    CAS  Article  PubMed  Google Scholar 

  63. Medved’ I, Černý R, (2019) Modeling of radionuclide transport in porous media: A review of recent studies. J Nucl Mater. https://doi.org/10.1016/j.jnucmat.2019.151765

    Article  Google Scholar 

  64. Wersin P, Curti E, Appelo CAJ (2004) Modelling bentonite–water interactions at high solid/liquid ratios: swelling and diffuse double layer effects. Appl Clay Sci 26:249–257. https://doi.org/10.1016/j.clay.2003.12.010

    CAS  Article  Google Scholar 

  65. Oscarson DW (1994) Surface diffusion: is it an important transport mechanism in compacted clays? Clays Clay Miner 42:534–543. https://doi.org/10.1346/CCMN.1994.0420504

    CAS  Article  Google Scholar 

  66. Molera M, Eriksen T (2002) Diffusion of 22Na+, 85Sr2+, 134Cs+ and 57Co2+ in bentonite clay compacted to different densities: experiments and modeling. Radiochim Acta 90:753–760. https://doi.org/10.1524/ract.2002.90.9-11_2002.753

    CAS  Article  Google Scholar 

  67. Appelo CAJ, Wersin P (2007) Multicomponent diffusion modeling in clay systems with application to the diffusion of tritium, iodide, and sodium in opalinus clay. Environ Sci Technol 41:5002–5007. https://doi.org/10.1021/es0629256

    CAS  Article  PubMed  Google Scholar 

  68. Molera MM (2002) On the sorption and diffusion of radionuclides in bentonite clay. Royal Institute of Technology, Stockholm, Sweden

  69. Lyklema J, Rovillard S, De Coninck J (1998) Electrokinetics: the properties of the stagnant layer unraveled. Langmuir 14:5659–5663

    CAS  Article  Google Scholar 

  70. Bourg IC, Bourg ACM, Sposito G (2003) Modeling diffusion and adsorption in compacted bentonite: a critical review. J Contam Hydrol 61:293–302. https://doi.org/10.1016/s0169-7722(02)00128-6

    CAS  Article  PubMed  Google Scholar 

  71. Patel RA, Phung QT, Seetharam SC, Perko J, Jacques D, Maes N, De Schutter G, Ye G, Van Breugel K (2016) Diffusivity of saturated ordinary Portland cement-based materials: A critical review of experimental and analytical modelling approaches. Cem Concr Res 90:52–72. https://doi.org/10.1016/j.cemconres.2016.09.015

    CAS  Article  Google Scholar 

  72. Marry V, Rotenberg B (2015) Upscaling strategies for modeling clay-rock properties. In: Natural and engineered clay barriers. Developments in Clay Science. pp 399–417. doi: https://doi.org/10.1016/b978-0-08-100027-4.00011-5

  73. Wang X, Li Y, Wang H (2020) Structural characterization of octahedral sheet in dioctahedral smectites by thermal analysis. Minerals. https://doi.org/10.3390/min10040347

    Article  Google Scholar 

  74. Tsipursky SI, Drits VA (1984) The distribution of octahedral cations in the 2: 1 layers of dioctahedral smectites studied by oblique-texture electron diffraction. Clay Miner 19:177–193

    CAS  Article  Google Scholar 

  75. Swai RE (2020) A review of molecular dynamics simulations in the designing of effective shale inhibitors: application for drilling with water-based drilling fluids. J Petroleum Explor Prod Technol 10:3515–3532. https://doi.org/10.1007/s13202-020-01003-2

    CAS  Article  Google Scholar 

  76. Heinz H, Lin TJ, Mishra RK, Emami FS (2013) Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the INTERFACE force field. Langmuir 29:1754–1765. https://doi.org/10.1021/la3038846

    CAS  Article  PubMed  Google Scholar 

  77. Hwang S, Blanco M, Demiralp E, Cagin T, Goddard WA (2001) The MS-Q force field for clay minerals: application to oil production. J Phys Chem B 105:4122–4127. https://doi.org/10.1021/jp002570r

    CAS  Article  Google Scholar 

  78. Abramov A, Iglauer S (2019) Application of the CLAYFF and the DREIDING Force Fields for Modeling of Alkylated Quartz Surfaces. Langmuir 35:5746–5752. https://doi.org/10.1021/acs.langmuir.9b00527

    CAS  Article  PubMed  Google Scholar 

  79. Tinnacher RM, Holmboe M, Tournassat C, Bourg IC, Davis JA (2016) Ion adsorption and diffusion in smectite: Molecular, pore, and continuum scale views. Geochim Cosmochim Acta 177:130–149. https://doi.org/10.1016/j.gca.2015.12.010

    CAS  Article  Google Scholar 

  80. Liu P, Harder E, Berne BJ (2004) On the Calculation of Diffusion Coefficients in Confined Fluids and Interfaces with an Application to the Liquid-Vapor Interface of Water. J Phys Chem B 108:6595–6602. https://doi.org/10.1021/jp0375057

    CAS  Article  Google Scholar 

  81. Zheng Y, Zaoui A (2013) Temperature effects on the diffusion of water and monovalent counterions in the hydrated montmorillonite. Phys A (Amsterdam, Neth) 392:5994–6001. https://doi.org/10.1016/j.physa.2013.07.019

    CAS  Article  Google Scholar 

  82. Ngouana WBF, Kalinichev AG (2014) Structural arrangements of isomorphic substitutions in smectites: molecular simulation of the swelling properties, interlayer structure, and dynamics of hydrated Cs–montmorillonite revisited with new clay models. J Phys Chem C 118:12758–12773. https://doi.org/10.1021/jp500538z

    CAS  Article  Google Scholar 

  83. Delville A (2013) Beyond the diffuse layer theory: a molecular analysis of the structural, dynamical, and mechanical properties of charged solid/liquid interfaces. J Phys Chem C 117:14558–14569. https://doi.org/10.1021/jp4017823

    CAS  Article  Google Scholar 

  84. Greathouse JA, Cygan RT, Fredrich JT, Jerauld GR (2016) Molecular dynamics simulation of diffusion and electrical conductivity in montmorillonite interlayers. J Phys Chem C 120:1640–1649. https://doi.org/10.1021/acs.jpcc.5b10851

    CAS  Article  Google Scholar 

  85. Busch A, Bertier P, Gensterblum Y, Rother G, Spiers CJ, Zhang M, Wentinck HM (2016) On sorption and swelling of CO2 in clays. Geomech Geophys Geo-Energy Geo-Resources 2:111–130. https://doi.org/10.1007/s40948-016-0024-4

    Article  Google Scholar 

  86. Li H, Song S, Dong X, Min F, Zhao Y, Peng C, Nahmad Y (2017) Molecular dynamics study of crystalline swelling of montmorillonite as affected by interlayer cation hydration. Jom 70:479–484. https://doi.org/10.1007/s11837-017-2666-2

    CAS  Article  Google Scholar 

  87. Yang G, Neretnieks I, Holmboe M (2017) Atomistic simulations of cation hydration in sodium and calcium montmorillonite nanopores. J Chem Phys 147:084705. https://doi.org/10.1063/1.4992001

    CAS  Article  PubMed  Google Scholar 

  88. Chávez-Páez M, dePablo L, dePablo JJ (2001) Monte Carlo simulations of Ca–montmorillonite hydrates. J Chem Phys 114:10948–10953. https://doi.org/10.1063/1.1374536

    CAS  Article  Google Scholar 

  89. Zhang X, Yi H, Zhao Y, Min F, Song S (2016) Study on the differences of Na- and Ca-montmorillonites in crystalline swelling regime through molecular dynamics simulation. Adv Powder Technol 27:779–785. https://doi.org/10.1016/j.apt.2016.03.005

    CAS  Article  Google Scholar 

  90. Sun L, Ling CY, Lavikainen LP, Hirvi JT, Kasa S, Pakkanen TA (2016) Influence of layer charge and charge location on the swelling pressure of dioctahedral smectites. Chem Phys 473:40–45. https://doi.org/10.1016/j.chemphys.2016.05.002

    CAS  Article  Google Scholar 

  91. Peng J, Yi H, Song S, Zhan W, Zhao Y (2019) Driving force for the swelling of montmorillonite as affected by surface charge and exchangeable cations: A molecular dynamic study. Results Phys 12:113–117. https://doi.org/10.1016/j.rinp.2018.11.011

    Article  Google Scholar 

  92. Yi H, Jia F, Zhao Y, Wang W, Song S, Li H, Liu C (2018) Surface wettability of montmorillonite (0 0 1) surface as affected by surface charge and exchangeable cations: A molecular dynamic study. Appl Surf Sci 459:148–154. https://doi.org/10.1016/j.apsusc.2018.07.216

    CAS  Article  Google Scholar 

  93. Cornell RM (1993) Adsorption of cesium on minerals: A review. J Radioanal Nuclear Chem 171:483–500. https://doi.org/10.1007/BF02219872

    CAS  Article  Google Scholar 

  94. de Koning A, Comans RNJ (2004) Reversibility of radiocaesium sorption on illite. Geochim Cosmochim Acta 68:2815–2823. https://doi.org/10.1016/j.gca.2003.12.025

    CAS  Article  Google Scholar 

  95. Kogure T, Morimoto K, Tamura K, Sato H, Yamagishi A (2012) XRD and HRTEM evidence for fixation of cesium ions in vermiculite clay. Chem Lett 41:380–382. https://doi.org/10.1246/cl.2012.380

    CAS  Article  Google Scholar 

  96. Fuller AJ, Shaw S, Ward MB, Haigh SJ, Mosselmans JFW, Peacock CL, Stackhouse S, Dent AJ, Trivedi D, Burke IT (2015) Caesium incorporation and retention in illite interlayers. Appl Clay Sci 108:128–134. https://doi.org/10.1016/j.clay.2015.02.008

    CAS  Article  Google Scholar 

  97. Camara M, Xu J, Wang X, Zhang J, Chen Z, Li X (2017) Molecular dynamics simulation of hydrated Na-montmorillonite with inorganic salts addition at high temperature and high pressure. Appl Clay Sci 146:206–215. https://doi.org/10.1016/j.clay.2017.05.045

    CAS  Article  Google Scholar 

  98. Whitley HD, Smith DE (2004) Free energy, energy, and entropy of swelling in Cs-, Na-, and Sr-montmorillonite clays. J Chem Phys 120:5387–5395. https://doi.org/10.1063/1.1648013

    CAS  Article  PubMed  Google Scholar 

  99. Xu J, Camara M, Liu J, Peng L, Zhang R, Ding T (2017) Molecular dynamics study of the swelling patterns of Na/Cs-, Na/Mg-montmorillonites and hydration of interlayer cations. Mol Simul 43:575–589. https://doi.org/10.1080/08927022.2016.1274982

    CAS  Article  Google Scholar 

  100. Tertre E, Delville A, Prêt D, Hubert F, Ferrage E (2015) Cation diffusion in the interlayer space of swelling clay minerals – A combined macroscopic and microscopic study. Geochim Cosmochim Acta 149:251–267. https://doi.org/10.1016/j.gca.2014.10.011

    CAS  Article  Google Scholar 

  101. Peng C, Wang G, Qin L, Luo S, Min F, Zhu X (2020) Molecular dynamics simulation of NH4-montmorillonite interlayer hydration: Structure, energetics, and dynamics. Appl Clay Sci. https://doi.org/10.1016/j.clay.2020.105657

    Article  Google Scholar 

  102. Boek ES (2014) Molecular dynamics simulations of interlayer structure and mobility in hydrated Li-, Na- and K-montmorillonite clays. Mol Phys 112:1472–1483. https://doi.org/10.1080/00268976.2014.907630

    CAS  Article  Google Scholar 

  103. Chang FRC, Skipper NT, Sposito G (1997) Monte carlo and molecular dynamics simulations of interfacial structure in lithium-montmorillonite hydrates. Langmuir 13:2074–2082. https://doi.org/10.1021/la9603176

    CAS  Article  Google Scholar 

  104. Bourg IC, Sposito G (2010) Connecting the molecular scale to the continuum scale for diffusion processes in smectite-rich porous media. Environ Sci Technol 44:2085–2091. https://doi.org/10.1021/es903645a

    CAS  Article  PubMed  Google Scholar 

  105. Subramanian N, Whittaker ML, Ophus C, Lammers LN (2020) Structural implications of interfacial hydrogen bonding in hydrated wyoming-montmorillonite clay. J Phys Chem C 124:8697–8705. https://doi.org/10.1021/acs.jpcc.9b11339

    CAS  Article  Google Scholar 

  106. Underwood T, Erastova V, Greenwell HC (2016) Ion adsorption at clay-mineral surfaces: the hofmeister series for hydrated smectite minerals. Clays Clay Miner 64:472–487. https://doi.org/10.1346/ccmn.2016.0640310

    CAS  Article  Google Scholar 

  107. Tournassat C, Bourg I, Holmboe M, Sposito G, Steefel C (2016) Molecular dynamics simulations of anion exclusion in clay interlayer nanopores. Clays Clay Miner 64:374–388. https://doi.org/10.1346/ccmn.2016.0640403

    CAS  Article  Google Scholar 

  108. Camara M, Liao H, Xu J, Ding T, Swai R (2019) Effects of inorganic salts addition on Na-montmorillonite clay at high temperature and high pressure: insights from molecular dynamics simulation. J Material Sci Eng 8:1–13

    Google Scholar 

  109. Sun Z, Chen Y-g, Cui Y-j, Ye W-m (2020) Adsorption of Eu(III) onto Gaomiaozi bentonite corroded by cement waters: Effect of cement solutions on the long-term sorption performance of bentonite in the repository conditions. J Clean Prod. https://doi.org/10.1016/j.jclepro.2019.119692

    Article  PubMed  PubMed Central  Google Scholar 

  110. Meleshyn A, Azeroual M, Reeck T, Houben G, Riebe B, Bunnenberg C (2009) Influence of (Calcium−)Uranyl−carbonate complexation on U(VI) sorption on Ca- and Na-bentonites. Environ Sci Technol 43:4896–4901. https://doi.org/10.1021/es900123s

    CAS  Article  PubMed  Google Scholar 

  111. Liu XY, Wang LH, Zheng Z, Kang ML, Li C, Liu CL (2013) Molecular dynamics simulation of the diffusion of uranium species in clay pores. J Hazard Mater 244–245:21–28. https://doi.org/10.1016/j.jhazmat.2012.11.031

    CAS  Article  PubMed  Google Scholar 

  112. De Soto IS, Ruiz AI, Ayora C, García R, Regadio M, Cuevas J (2012) Diffusion of landfill leachate through compacted natural clays containing small amounts of carbonates and sulfates. Appl Geochem 27:1202–1213. https://doi.org/10.1016/j.apgeochem.2012.02.032

    CAS  Article  Google Scholar 

  113. Van Loon LR, Leupin OX, Cloet V (2018) The diffusion of SO4 2− in Opalinus Clay: Measurements of effective diffusion coefficients and evaluation of their importance in view of microbial mediated reactions in the near field of radioactive waste repositories. Appl Geochem 95:19–24. https://doi.org/10.1016/j.apgeochem.2018.05.009

    CAS  Article  Google Scholar 

  114. Bagnoud A, Leupin O, Schwyn B, Bernier-Latmani R (2016) Rates of microbial hydrogen oxidation and sulfate reduction in Opalinus Clay rock. Appl Geochem 72:42–50. https://doi.org/10.1016/j.apgeochem.2016.06.011

    CAS  Article  Google Scholar 

  115. Paalman MAA, Van Der Weijden CH, Loch JPG (1994) Sorption of cadmium on suspended matter under estuarine conditions; competition and complexation with major sea-water ions. Water Air Soil Pollut 79:49–60. https://doi.org/10.1007/BF00477975

    Article  Google Scholar 

  116. Hatje V, Payne TE, Hill DM, McOrist G, Birch GF, Szymczak R (2003) Kinetics of trace element uptake and release by particles in estuarine waters: effects of pH, salinity, and particle loading. Environ Int 29:619–629. https://doi.org/10.1016/s0160-4120(03)00049-7

    CAS  Article  PubMed  Google Scholar 

  117. Pedron F, Petruzzelli G, Barbafieri M, Tassi E (2009) Strategies to use phytoextraction in very acidic soil contaminated by heavy metals. Chemosphere 75:808–814. https://doi.org/10.1016/j.chemosphere.2009.01.044

    CAS  Article  PubMed  Google Scholar 

  118. Acosta JA, Jansen B, Kalbitz K, Faz A, Martinez-Martinez S (2011) Salinity increases mobility of heavy metals in soils. Chemosphere 85:1318–1324. https://doi.org/10.1016/j.chemosphere.2011.07.046

    CAS  Article  PubMed  Google Scholar 

  119. Kozaki T, Liu J, Sato S (2008) Diffusion mechanism of sodium ions in compacted montmorillonite under different NaCl concentration. Physics and Chemistry of the Earth, Parts A/B/C 33:957–961. https://doi.org/10.1016/j.pce.2008.05.007

    Article  Google Scholar 

  120. Saiers JE, Hornberge GM (1996) Migration of 137Cs through quartz sand: experimental results and modeling approaches. J Contam Hydrol 22:255–270. https://doi.org/10.1016/0169-7722(95)00094-1

    CAS  Article  Google Scholar 

  121. Turner NB, Ryan JN, Saiers JE (2006) Effect of desorption kinetics on colloid-facilitated transport of contaminants: Cesium, strontium, and illite colloids. Water Resour Res. https://doi.org/10.1029/2006wr004972

    Article  Google Scholar 

  122. Kitamura A, Fujiwara K, Yamamoto T, Nishikawa S, Moriyama H (1999) Analysis of adsorption behavior of cations onto quartz surface by electrical double-layer model. J Nucl Sci Technol 36:1167–1175. https://doi.org/10.1080/18811248.1999.9726312

    CAS  Article  Google Scholar 

  123. Ning Z, Ishiguro M, Koopal LK, Sato T, Ji K (2018) Comparison of strontium retardation for kaolinite, illite, vermiculite and allophane. J Radioanal Nucl Chem 317:409–419. https://doi.org/10.1007/s10967-018-5870-9

    CAS  Article  Google Scholar 

  124. Baborova L, Vopálka D, Hofmanová E, Vetešník A (2016) Migration behaviour of strontium in Czech bentonite clay. J Sustain Develop Energy Water Environ Syst 4:293–306. https://doi.org/10.13044/j.sdewes.2016.04.0023

    Article  Google Scholar 

  125. Kasar S, Kumar S, Bajpai RK, Tomar BS (2016) Diffusion of Na(I), Cs(I), Sr(II) and Eu(III) in smectite rich natural clay. J Environ Radioact 151(1):218–223. https://doi.org/10.1016/j.jenvrad.2015.10.012

    CAS  Article  PubMed  Google Scholar 

  126. Glaus MA, Aertsens M, Appelo CAJ, Kupcik T, Maes N, Van Laer L, Van Loon LR (2015) Cation diffusion in the electrical double layer enhances the mass transfer rates for Sr2+, Co2+ and Zn2+ in compacted illite. Geochim Cosmochim Acta 165:376–388. https://doi.org/10.1016/j.gca.2015.06.014

    CAS  Article  Google Scholar 

  127. Hao W, Flynn SL, Kashiwabara T, Alam MS, Bandara S, Swaren L, Robbins LJ, Alessi DS, Konhauser KO (2019) The impact of ionic strength on the proton reactivity of clay minerals. Chem Geol. https://doi.org/10.1016/j.chemgeo.2019.119294

    Article  Google Scholar 

  128. Soler JM, Steefel CI, Gimmi T, Leupin OX, Cloet V (2019) Modeling the ionic strength effect on diffusion in clay. The DR-a experiment at Mont Terri. ACS Earth Space Chem 3:442–451. https://doi.org/10.1021/acsearthspacechem.8b00192

    CAS  Article  Google Scholar 

  129. Wu T, Wang Z, Wang H, Zhang Z, Van Loon LR (2017) Salt effects on Re(VII) and Se(IV) diffusion in bentonite. Appl Clay Sci 141:104–110. https://doi.org/10.1016/j.clay.2017.02.021

    CAS  Article  Google Scholar 

  130. Wu H, Huang W, Duan Z, Luo M, Wang Z, Hua R (2020) Investigation of Se(IV) diffusion in compacted Tamusu clay by capillary method. J Radioanal Nucl Chem 324:903–911. https://doi.org/10.1007/s10967-020-07089-6

    CAS  Article  Google Scholar 

  131. Gu X, Evans LJ, Barabash SJ (2010) Modeling the adsorption of Cd (II), Cu (II), Ni (II), Pb (II) and Zn (II) onto montmorillonite. Geochim Cosmochim Acta 74:5718–5728. https://doi.org/10.1016/j.gca.2010.07.016

    CAS  Article  Google Scholar 

  132. Aldaba D, Glaus MA, Van Loon LR, Rigol A, Vidal M (2017) Diffusion of radiosulphate and radiocaesium in kaolinite clay (KGa-2): Testing the applicability of the pore water diffusion model. Appl Geochem 86:84–91. https://doi.org/10.1016/j.apgeochem.2017.09.014

    CAS  Article  Google Scholar 

  133. Ozdes D, Duran C, Senturk HB (2011) Adsorptive removal of Cd(II) and Pb(II) ions from aqueous solutions by using Turkish illitic clay. J Environ Manage 92:3082–3090. https://doi.org/10.1016/j.jenvman.2011.07.022

    CAS  Article  PubMed  Google Scholar 

  134. Jiang M-q, Jin X-y, Lu X-Q, Chen Z-l (2010) Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay. Desalination 252:33–39. https://doi.org/10.1016/j.desal.2009.11.005

    CAS  Article  Google Scholar 

  135. Yu S, Mei H, Chen X, Tan X, Ahmad B, Alsaedi A, Hayat T, Wang X (2015) Impact of environmental conditions on the sorption behavior of radionuclide 90 Sr(II) on Na-montmorillonite. J Mol Liq 203:39–46. https://doi.org/10.1016/j.molliq.2014.12.041

    CAS  Article  Google Scholar 

  136. Xu Z, Pan D, Sun Y, Wu W (2018) Stability of GMZ bentonite colloids: Aggregation kinetic and reversibility study. Appl Clay Sci 161:436–443. https://doi.org/10.1016/j.clay.2018.05.002

    CAS  Article  Google Scholar 

  137. Missana T, Alonso U, Mayordomo N, Fernandez AM, López T, Hedström CM, Hansen EE, Nilsson U (2016) Final report on experimental results on clay colloid stability WP4. DELIVERABLE (D-N: D4.11). BELBaR

  138. Liu Y, Alessi DS, Flynn SL, Alam MS, Hao W, Gingras M, Zhao H, Konhauser KO (2018) Acid-base properties of kaolinite, montmorillonite and illite at marine ionic strength. Chem Geol 483:191–200. https://doi.org/10.1016/j.chemgeo.2018.01.018

    CAS  Article  Google Scholar 

  139. Kraepiel AM, Keller K, Morel FM (1999) A Model for Metal Adsorption on Montmorillonite. J Colloid Interface Sci 210:43–54. https://doi.org/10.1006/jcis.1998.5947

    CAS  Article  PubMed  Google Scholar 

  140. Schindler PW, Fürst B, Dick R, Wolf PU (1976) Ligand properties of surface silanol groups. I. surface complex formation with Fe3+, Cu2+, Cd2+, and Pb2+. J Colloid Interface Sci 55:469–475. https://doi.org/10.1016/0021-9797(76)90057-6

    CAS  Article  Google Scholar 

  141. Abollino O, Giacomino A, Malandrino M, Mentasti E (2008) Interaction of metal ions with montmorillonite and vermiculite. Appl Clay Sci 38:227–236. https://doi.org/10.1016/j.clay.2007.04.002

    CAS  Article  Google Scholar 

  142. Malandrino M, Abollino O, Giacomino A, Aceto M, Mentasti E (2006) Adsorption of heavy metals on vermiculite: influence of pH and organic ligands. J Colloid Interf Sci 299:537–546. https://doi.org/10.1016/j.jcis.2006.03.011

    CAS  Article  Google Scholar 

  143. El Ass K (2018) Adsorption of cadmium and copper onto natural clay: isotherm, kinetic and thermodynamic studies. Global NEST J 20:198–207. https://doi.org/10.30955/gnj.002352

    Article  Google Scholar 

  144. Schnurr A, Marsac R, Rabung T, Lützenkirchen J, Geckeis H (2015) Sorption of Cm(III) and Eu(III) onto clay minerals under saline conditions: Batch adsorption, laser-fluorescence spectroscopy and modeling. Geochim Cosmochim Acta 151:192–202. https://doi.org/10.1016/j.gca.2014.11.011

    CAS  Article  Google Scholar 

  145. Glaus MA, Frick S, Van Loon LR (2020) A coherent approach for cation surface diffusion in clay minerals and cation sorption models: Diffusion of Cs+ and Eu3+ in compacted illite as case examples. Geochim Cosmochim Acta 274:79–96. https://doi.org/10.1016/j.gca.2020.01.054

    CAS  Article  Google Scholar 

  146. Zhang H, Wang X, Liang H, Tan T, Wu W (2016) Adsorption behavior of Th(IV) onto illite: Effect of contact time, pH value, ionic strength, humic acid and temperature. Appl Clay Sci 127–128:35–43. https://doi.org/10.1016/j.clay.2016.03.038

    CAS  Article  Google Scholar 

  147. He H, Liu J, Dong Y, Li H, Zhao S, Wan J, Jia M, Zhang H, Liao J, Yang Y, Liu N (2019) Sorption of selenite on Tamusu clay in simulated groundwater with high salinity under aerobic/anaerobic conditions. J Environ Radioact 203:210–219. https://doi.org/10.1016/j.jenvrad.2019.03.020

    CAS  Article  PubMed  Google Scholar 

  148. González Sánchez F, Van Loon LR, Gimmi T, Jakob A, Glaus MA, Diamond LW (2008) Self-diffusion of water and its dependence on temperature and ionic strength in highly compacted montmorillonite, illite and kaolinite. Appl Geochem 23:3840–3851. https://doi.org/10.1016/j.apgeochem.2008.08.008

    CAS  Article  Google Scholar 

  149. Vasseur G, Djeranmaigre I, Grunberger D, Rousset G, Tessier D, Velde B (1995) Evolution of structural and physical parameters of clays during experimental compaction. Mar Pet Geol 12:941–954. https://doi.org/10.1016/0264-8172(95)98857-2

    Article  Google Scholar 

  150. Muurinen A (1994) Diffusion of anions and cations in compacted sodium bentonite. Helsingin Yliopisto (Finland),

  151. Wu T, Wang Z, Tong Y, Wang Y, Van Loon LR (2018) Investigation of Re(VII) diffusion in bentonite by through-diffusion and modeling techniques. Appl Clay Sci 166:223–229. https://doi.org/10.1016/j.clay.2018.08.023

    CAS  Article  Google Scholar 

  152. Holmboe M, Wold S, Jonsson M (2012) Porosity investigation of compacted bentonite using XRD profile modeling. J Contam Hydrol 128:19–32. https://doi.org/10.1016/j.jconhyd.2011.10.005

    CAS  Article  PubMed  Google Scholar 

  153. Appelo CAJ (2013) A Review of porosity and diffusion in bentonite. Helsinki (Finland)

  154. Van Loon LR, Glaus MA, Müller W (2007) Anion exclusion effects in compacted bentonites: Towards a better understanding of anion diffusion. Appl Geochem 22:2536–2552. https://doi.org/10.1016/j.apgeochem.2007.07.008

    CAS  Article  Google Scholar 

  155. Tournassat C, Appelo CAJ (2011) Modelling approaches for anion-exclusion in compacted Na-bentonite. Geochim Cosmochim Acta 75:3698–3710. https://doi.org/10.1016/j.gca.2011.04.001

    CAS  Article  Google Scholar 

  156. Kozaki T, Fujishima A, Saito N, Sato S, Ohashi H (2005) Effects of dry density and exchangeable cations on the diffusion process of sodium ions in compacted montmorillonite. Eng Geol 81:246–254. https://doi.org/10.1016/j.enggeo.2005.06.010

    Article  Google Scholar 

  157. Mesri G, Olson RE (1971) Mechanisms controlling the permeability of clays. Clays Clay Miner 19:151–158. https://doi.org/10.1346/ccmn.1971.0190303

    CAS  Article  Google Scholar 

  158. Tertre E, Savoye S, Hubert F, Pret D, Dabat T, Ferrage E (2018) Diffusion of water through the dual-porosity swelling clay mineral vermiculite. Environ Sci Technol 52:1899–1907. https://doi.org/10.1021/acs.est.7b05343

    CAS  Article  PubMed  Google Scholar 

  159. Porion P, Faugère AM, Delville A (2014) Structural and dynamical properties of water molecules confined within clay sediments probed by deuterium NMR spectroscopy, multiquanta relaxometry, and two-time stimulated echo attenuation. J Phys Chem C 118:20429–20444. https://doi.org/10.1021/jp506312q

    CAS  Article  Google Scholar 

  160. Bayesteh H, Mirghasemi AA (2015) Numerical simulation of porosity and tortuosity effect on the permeability in clay: Microstructural approach. Soils Found 55:1158–1170. https://doi.org/10.1016/j.sandf.2015.09.016

    Article  Google Scholar 

  161. Martın M, Cuevas J, Leguey S (2000) Diffusion of soluble salts under a temperature gradient after the hydration of compacted bentonite. Appl Clay Sci 17:55–70

    Article  Google Scholar 

  162. Jang Y-S, Hong G-T (2003) An experimental study on diffusion characteristics of hardened liner materials to inorganic chemicals. Environ Geol 44:599–607. https://doi.org/10.1007/s00254-003-0797-y

    CAS  Article  Google Scholar 

  163. Mon EE, Hamamoto S, Kawamoto K, Komatsu T, Moldrup P (2016) Temperature effects on solute diffusion and adsorption in differently compacted kaolin clay. Environ Earth Sci. https://doi.org/10.1007/s12665-016-5358-2

    Article  Google Scholar 

  164. Wang C, Myshkin VF, Khan VA, Poberezhnikov AD, Baraban AP (2022) Effect of temperature on the diffusion and sorption of cations in clay vermiculite. ACS Omega 7:11596–11605. https://doi.org/10.1021/acsomega.1c06059

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  165. Korichi S, Keddam M, Bensmaili A (2011) Calculation of the diffusion coefficient of uranium in compacted clay: effect of the temperature. Defect Diffus Forum 312–315:64–69. https://doi.org/10.4028/www.scientific.net/DDF.312-315.64

    CAS  Article  Google Scholar 

  166. Zheng Y, Zaoui A, Shahrour I (2010) Evolution of the interlayer space of hydrated montmorillonite as a function of temperature. Am Miner 95:1493–1499. https://doi.org/10.2138/am.2010.3541

    CAS  Article  Google Scholar 

  167. Xu D, Tan X, Chen C, Wang X (2008) Adsorption of Pb(II) from aqueous solution to MX-80 bentonite: Effect of pH, ionic strength, foreign ions and temperature. Appl Clay Sci 41:37–46. https://doi.org/10.1016/j.clay.2007.09.004

    CAS  Article  Google Scholar 

  168. Li J, Hu J, Sheng G, Zhao G, Huang Q (2009) Effect of pH, ionic strength, foreign ions and temperature on the adsorption of Cu(II) from aqueous solution to GMZ bentonite. Colloids Surf, A 349:195–201. https://doi.org/10.1016/j.colsurfa.2009.08.018

    CAS  Article  Google Scholar 

  169. Pope RN (2017) Influence of Temperature on Diffusion and Sorption of 237 Np (V) through Bentonite Engineered Barriers. Clemson University

  170. Wu T, Amayri S, Drebert J, Loon LRV, Reich T (2009) Neptunium(V) sorption and diffusion in Opalinus clay. Environ Sci Technol 43:6567–6571. https://doi.org/10.1021/es9008568

    CAS  Article  PubMed  Google Scholar 

  171. Fröhlich DR, Amayri S, Drebert J, Reich T (2013) Influence of humic acid on neptunium(V) sorption and diffusion in Opalinus Clay. Ract 101:553–560. https://doi.org/10.1524/ract.2013.2059

    CAS  Article  Google Scholar 

  172. Wu T, Wang H, Zheng Q, Zhao YL, Van Loon LR (2014) Diffusion behavior of Se(IV) and Re(VII) in GMZ bentonite. Appl Clay Sci 101:136–140. https://doi.org/10.1016/j.clay.2014.07.028

    CAS  Article  Google Scholar 

  173. Wang Z, Wang H, Li Q, Xu M, Guo Y, Li J, Wu T (2016) pH effect on Re(VII) and Se(IV) diffusion in compacted GMZ bentonite. Appl Geochem 73:1–7. https://doi.org/10.1016/j.apgeochem.2016.07.015

    CAS  Article  Google Scholar 

  174. Jansson M, Eriksen TE (1998) CHEMLAB - in situ diffusion experiments using radioactive tracers. Radiochim Acta 82:153–156. https://doi.org/10.1524/ract.1998.82.special-issue.153

    CAS  Article  Google Scholar 

  175. Jansson M (2002) Diffusion of radionuclides in bentonite clay-laboratory and in situ studies, vol 34. Royal Inst. of Tech, Sweden

    Google Scholar 

  176. Wang X, Chen Y, Wu Y (2004) Diffusion of Eu(III) in compacted bentonite-effect of pH, solution concentration and humic acid. Appl Radiat Isot 60:963–969. https://doi.org/10.1016/j.apradiso.2004.01.008

    CAS  Article  PubMed  Google Scholar 

  177. Wang XK, Chen CL, Zhou X, Tan XL, Hu WP (2005) Diffusion and sorption of U(VI) in compacted bentonite studied by a capillary method. Radiochim Acta 93:273–278. https://doi.org/10.1524/ract.93.5.273.64279

    CAS  Article  Google Scholar 

  178. Fox PM, Tinnacher RM, Cheshire MC, Caporuscio F, Carrero S, Nico PS (2019) Effects of bentonite heating on U(VI) adsorption. Appl Geochem. https://doi.org/10.1016/j.apgeochem.2019.104392

    Article  Google Scholar 

  179. Joseph C, Mibus J, Trepte P, Muller C, Brendler V, Park DM, Jiao Y, Kersting AB, Zavarin M (2017) Long-term diffusion of U(VI) in bentonite: Dependence on density. Sci Total Environ 575:207–218. https://doi.org/10.1016/j.scitotenv.2016.10.005

    CAS  Article  PubMed  Google Scholar 

  180. Zhu R, Chen Q, Zhu R, Xu Y, Ge F, Zhu J, He H (2015) Sequestration of heavy metal cations on montmorillonite by thermal treatment. Appl Clay Sci 107:90–97. https://doi.org/10.1016/j.clay.2015.01.008

    CAS  Article  Google Scholar 

  181. McBean EA, Rovers FA, Farquhar GJ (1995) Solid waste landfill engineering and design. Prentice hall, New Jersey

    Google Scholar 

  182. Thomas HR, Ferguson WJ (1999) A fully coupled heat and mass transfer model incorporating contaminant gas transfer in an unsaturated porous medium. Comput Geotech 24:65–87. https://doi.org/10.1016/s0266-352x(98)00030-5

    Article  Google Scholar 

  183. Hardin E, Hadgu T, Clayton D, Howard R, Greenberg H, Blink J, Sharma M, Sutton M, Carter J, Dupont M, Rodwell P (2012) Repository reference disposal concepts and thermal load management analysis. . U.S.

  184. Teich-McGoldrick SL, Greathouse JA, Jové-Colón CF, Cygan RT (2015) Swelling properties of montmorillonite and beidellite clay minerals from molecular simulation: comparison of temperature, interlayer cation, and charge location effects. J Phys Chem C 119:20880–20891. https://doi.org/10.1021/acs.jpcc.5b03253

    CAS  Article  Google Scholar 

  185. Ma Z, Pathegama Gamage R, Rathnaweera T, Kong L (2019) Review of application of molecular dynamic simulations in geological high-level radioactive waste disposal. Appl Clay Sci 168:436–449. https://doi.org/10.1016/j.clay.2018.11.018

    CAS  Article  Google Scholar 

  186. Won J, Burns SE (2018) Role of immobile kaolinite colloids in the transport of heavy metals. Environ Sci Technol 52:2735–2741. https://doi.org/10.1021/acs.est.7b05631

    CAS  Article  PubMed  Google Scholar 

  187. Schäfer T, Huber F, Seher H, Missana T, Alonso U, Kumke M, Eidner S, Claret F, Enzmann F (2012) Nanoparticles and their influence on radionuclide mobility in deep geological formations. Appl Geochem 27:390–403. https://doi.org/10.1016/j.apgeochem.2011.09.009

    CAS  Article  Google Scholar 

  188. Yang Y, Saiers JE, Barnett MO (2013) Impact of interactions between natural organic matter and metal oxides on the desorption kinetics of uranium from heterogeneous colloidal suspensions. Environ Sci Technol 47:2661–2669. https://doi.org/10.1021/es304013r

    CAS  Article  PubMed  Google Scholar 

  189. Missana T, Alonso U, Fernández AM, García-Gutiérrez M (2018) Colloidal properties of different smectite clays: Significance for the bentonite barrier erosion and radionuclide transport in radioactive waste repositories. Appl Geochem 97:157–166. https://doi.org/10.1016/j.apgeochem.2018.08.008

    CAS  Article  Google Scholar 

  190. Schäfer T, Geckeis H, Bouby M, Fanghänel T (2004) U, Th, Eu and colloid mobility in a granite fracture under near-natural flow conditions. Radiochim Acta 92:731–737. https://doi.org/10.1524/ract.92.9.731.54975

    Article  Google Scholar 

  191. Möri A, Alexander WR, Geckeis H, Hauser W, Schäfer T, Eikenberg J, Fierz T, Degueldre C, Missana T (2003) The colloid and radionuclide retardation experiment at the Grimsel Test Site: influence of bentonite colloids on radionuclide migration in a fractured rock. Colloids Surf, A 217:33–47. https://doi.org/10.1016/s0927-7757(02)00556-3

    Article  Google Scholar 

  192. Albarran N, Missana T, Garcia-Gutierrez M, Alonso U, Mingarro M (2011) Strontium migration in a crystalline medium: effects of the presence of bentonite colloids. J Contam Hydrol 122:76–85. https://doi.org/10.1016/j.jconhyd.2010.11.005

    CAS  Article  PubMed  Google Scholar 

  193. Kolomá K, Červinka R, Hanusová I (2018) 137Cs transport in crushed granitic rock: The effect of bentonite colloids. Appl Geochem 96:55–61. https://doi.org/10.1016/j.apgeochem.2018.06.005

    CAS  Article  Google Scholar 

  194. Missana T, Alonso Ú, García-Gutiérrez M, Mingarro M (2008) Role of bentonite colloids on europium and plutonium migration in a granite fracture. Appl Geochem 23:1484–1497. https://doi.org/10.1016/j.apgeochem.2008.01.008

    CAS  Article  Google Scholar 

  195. Missana T, Alonso Ú, Turrero MJ (2003) Generation and stability of bentonite colloids at the bentonite/granite interface of a deep geological radioactive waste repository. J Contam Hydrol 61:17–31. https://doi.org/10.1016/s0169-7722(02)00110-9

    CAS  Article  PubMed  Google Scholar 

  196. Yan C, Cheng T, Shang J (2019) Effect of bovine serum albumin on stability and transport of kaolinite colloid. Water Res 155:204–213. https://doi.org/10.1016/j.watres.2019.02.022

    CAS  Article  PubMed  Google Scholar 

  197. Sotirelis NP, Chrysikopoulos CV (2017) Heteroaggregation of graphene oxide nanoparticles and kaolinite colloids. Sci Total Environ 579:736–744. https://doi.org/10.1016/j.scitotenv.2016.11.034

    CAS  Article  PubMed  Google Scholar 

  198. Yang J, Ge M, Jin Q, Chen Z, Guo Z (2019) Co-transport of U(VI), humic acid and colloidal gibbsite in water-saturated porous media. Chemosphere 231:405–414. https://doi.org/10.1016/j.chemosphere.2019.05.091

    CAS  Article  PubMed  Google Scholar 

  199. Chen C, Zhao K, Shang J, Liu C, Wang J, Yan Z, Liu K, Wu W (2018) Uranium (VI) transport in saturated heterogeneous media: Influence of kaolinite and humic acid. Environ Pollut 240:219–226. https://doi.org/10.1016/j.envpol.2018.04.095

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Tomsk Polytechnic University development program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Wang.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Myshkin, V.F., Khan, V.A. et al. A review of the migration of radioactive elements in clay minerals in the context of nuclear waste storage. J Radioanal Nucl Chem (2022). https://doi.org/10.1007/s10967-022-08394-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10967-022-08394-y

Keywords

  • Compacted clay
  • Swelling
  • Porosity
  • Radionuclide
  • Cation
  • Transport
  • Hydration