Skip to main content
Log in

Thermal and mechanical properties of Th-30Zr alloy

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Literature studies reveal apaucity of data on the Th-Zr system. Investigations on the Th-30Zr alloy and its synthesis, microstructure and characterization were carried out. The Th-30Zr alloy was characterized using X-ray diffraction, optical microscopy and SEM–EDS. The elastic properties of the Th-30Zr alloy were measured and showed that, alloying of zirconium increased the modulus of elasticity. Hardness of the alloy was determined by Vickers hardness indentation. The measured coefficient of thermal expansion of the alloy exhibited an increase from 8.6—9.7*10–6/K as temperature varied from ambient to 1000 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dukert JM (1970) Thorium and the third fuel. United States Atomic Energy Commission, Division of Technical Information, Library of Congress Catalog Card Number 74:606041

    Google Scholar 

  2. B. Soon (2019)In: A. K. Nayak, B. R. Sehgal (eds.),Thorium-Energy for the Futureselect papers from ThEC15, Springer Nature, Singapore

  3. Kaufmann R (1962) Nuclear reactor fuel elements metallurgy and fabrication, Inter Science Publishers. John Wiley & Sons, New York

    Google Scholar 

  4. Elsheikh BM (2013) Safety assessment of molten salt reactors in comparison with light water reactors. J Radiat Res Appl Sci 6:63–70

    Article  CAS  Google Scholar 

  5. Ade A, Worrall A, Powers J, Bowman S (2016) Analysis of key safety metrics of thorium utilization in LWRs. Nucl Technol 194:162–177

    Article  Google Scholar 

  6. S. Banerjee, H. P. Gupta (2019)In: A. K. Nayak, B. R. Sehgal (eds.),Energy for the future select papers from ThEC15, Springer, Singapore

  7. S. L. Krahn, A. Worrall (2016)The Reemergence of the Thorium Fuel Cycle: A Special Issue of Nuclear Technology, Nucl. Technol.https://doi.org/10.13182/NT16-A38390

  8. Baldova D, Fridmana E, Shwageraus E (2014) High conversion Th-U233 fuel for current generation of PWRs: Part I - Assembly level analysis. Ann Nucl Energy 73:552–559

    Article  CAS  Google Scholar 

  9. Rodriguez P, Sundaram CV (1981) Nuclear and materials aspects of the thorium fuel cycle. J Nucl Mater 100:227–249

    Article  CAS  Google Scholar 

  10. B. R. Sehgal (2019) In: A. K. Nayak, B. R. Sehgal (eds.),Energy for the future select papers from ThEC15, Springer, Singapore

  11. T. Ogata (2012) In: R.J. M. Konings(ed.), Comprehensive nuclear materials volume 3: advanced fuels/fuel cladding/nuclear fuel performance modeling and simulation, Elsevier,Oxford

  12. Galahom AA (2017) Minimization of the fission product waste by using thorium based fuelinstead of uranium dioxide. Nucl Eng Des 314:165–172

    Article  CAS  Google Scholar 

  13. Wojciechowski A (2018) The U-232 production in thorium cycle. Prog Nucl Energy 106:204–214

    Article  CAS  Google Scholar 

  14. Yemelyanov VS, Yevstyukhin AL (1969) The metallurgy of nuclear fuel properties and principles of the technologyof uranium, thorium and plutonium. Pergamon Press, Oxford

    Google Scholar 

  15. O. N. Carlson (1950), Some studies on the uranium-thorium-zirconium ternary alloys, AECD-3206, USAEC, , Oak Ridge, Tennessee

  16. Gibson ED, Loomis BA, Carlson ON (1958) Thorium-zirconium and thorium-hafnium alloy system. Trans ASM 50:348–369

    Google Scholar 

  17. T. A. Badaeva, G. K. Alekseenko, Z.N. Khim, (1959), Phase diagram of the thorium-zirconium system, J inorganic chemistry, No.8 Zapiski vsesoyuz. Min. obsh-va, 88(4): 1873–1880

  18. T. A. Badaeva, G.K. Alekseenko (1963), The structure of alloys of certain systems containing uranium and thorium , AEC-tr-5834, USAEC, pp-395–415.

  19. Badaeva TA, Koozenetsova RI (1972) Solid and liquidus surface of the systems Th-Zr-U, IZV. Akad. Hauk, SSSR metally 1:196–200

    Google Scholar 

  20. Murray JR (1960) The constitution of thorium-zirconium alloys containing more than 15% zirconium and the effect of some third elements on the stability of the body-centered cubic phase in these alloys. J Less-Common Metals 2:1–10

    Article  CAS  Google Scholar 

  21. Carlson ON, Stevens ER (1971) Thorium phase diagrams. Nucl Eng Des 17:439–446

    Article  CAS  Google Scholar 

  22. W. Brostow, M.A. Macip, (1983), Prediction of Solid+ Liquid equilibrium diagrams for binary mixtures forming solid solutions with an extremum, Mat. Res. Soc. Symp. Poc. 19:217–222, Elsevier Science publishing Co. Inc.

  23. Johnson RH, Honeycombe RWK (1961) The solid solubility of zirconium in α-thorium. J Nucl Mater 4(1):59–65

    Article  CAS  Google Scholar 

  24. Evans DS, Raynor GV (1961) The solubility of zirconium in α -thorium. J Nucl Mater 4(1):66–69

    Article  CAS  Google Scholar 

  25. Carlson ON, Smith JF (1987) Effects of interstitial impurities on phase equilibria. Bull Alloy phase diagr 8(3):208–213

    Article  CAS  Google Scholar 

  26. T. B. Massalski (1986) Binary alloy phase diagrams, Vol. 2, ASM, Metal park, Ohio- 44073

  27. Johnson RH, Honeycombe RWK (1961) The structure and heat treatment of some thorium-zirconium alloys. J Nucl Mater 4(3):995–310

    Article  Google Scholar 

  28. Hanson CG, Rivlin VG, Hatt BA (1964) The β-phase transformation of some zirconium-thorium alloys. J Nucl Mater 12(1):83–93

    Article  CAS  Google Scholar 

  29. Peterson DT, Ostenson JE (1978) Superconducting temperatures of quenched thorium zirconium alloys. Journal of the Less-Common Metals 60:115–121

    Article  CAS  Google Scholar 

  30. Luo HL (1979) superconductivity in Th-Zr alloys. Journal of the Less-Common Metals 65:13–17

    Article  CAS  Google Scholar 

  31. Kollie TG (1977) Measurement of the thermal-expansion coefficient of nickel from 300 to 1000 K anddetermination of the power-law constants near the Curie temperature. Phys Rev B 16:4872–4881

    Article  CAS  Google Scholar 

  32. J. E. Zimmer, J. R. Cost (1969) Determinationof the elastic constants of a unidirectional fiber composite using ultrasonic velocity measurements, J. Acoust. Soc. Am. 795–803.

  33. Thermophysical properties of materials for nuclear engineering:a tutorial and collection of data, (2008), IAEA, Vienna

  34. R. B. Ross , (1992), Metallic Materials Specification Handbook, Fourth Ed. Vol. 1, Chapman & Hall, London

  35. Smith MD, Honeycombe RWK (1959) The effect of oxygen, carbon and nitrogen on the properties of sintered thorium. J Nuc Mater 4:345–355

    Article  Google Scholar 

  36. R. M. Goldhoff, H. R. Ogden, R. I. Jaffee (1952), A study of the strengthening of thorium by alloying , cold work and aging, USAEC, BMI-776, Battelle Memorial Institute Columbus , Ohio.

  37. Ashby MF (1999) Materials selection mechanical design, 2nd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  38. Courtney TH (2005) Mechanical behavior of materials. Waveland Press Inc., Illinois

    Google Scholar 

  39. Hadi MA, Nasir MT, Roknuzzaman M, Rayhan MA, Naqib SH, Islam AKMA (2016) First-principles prediction of mechanical and bonding characteristics of new T2 superconductor Ta5GeB2. Phys Status Solidi B 253(10):2020–2026

    Article  CAS  Google Scholar 

  40. R. P. Thompson, W. J. Clegg (2018) Predicting whether a material is ductile or brittle, Current Opinion in Solid State & Materials Science https://doi.org/10.1016/j.cossms.2018.04.001

  41. Frantsevich IN, Voronov FF, Bokuta SA (1982) Handbook on elastic constants and moduli of elasticity for metals and nonmetals. Naukova Dumka, Kiev

    Google Scholar 

  42. Cahoon JR, Broughton WH, Kutzak AR (1971) The determination of yield strength from hardness measurement. Metall Trans 2:1979–1983

    Article  CAS  Google Scholar 

  43. Skinner GB, Johnston HL (1953) Thermal Expansion of Zirconium between298°K and 1600°K. J Chem Phys 21(8):1383–1384

    Article  CAS  Google Scholar 

  44. Vaidyanathan S (2021) Transition to a sustainable thorium fuel cycle in pressurized water reactors using bimetallic thorium-zirconium alloys cladding. Nucl Techno 207(12):1793–1809. https://doi.org/10.1080/00295450.2020.1846987

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express sincere thanks and gratitude to Dr. P.P. Nanekar, Head, PIED, for his constant support. The authors also thank Dr. P.K. Pujari, Group Director RC&I group, and Shri V. Bhasin, Group Director NFG group for their constant encouragement during the course of this work. The authors would like to express their sincere thanks to Dr. S.B. Roy, Head, U.E.D. for providing the raw material. The authors also express their deepest thanks to late Dr. S. Banerjee, Ex. Chairman, Department of Atomic Energy, India for his guidance and suggestion on the subject.

Funding

The research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparna Banerjee.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, U., Santu Kaity, Banerjee, A. et al. Thermal and mechanical properties of Th-30Zr alloy. J Radioanal Nucl Chem 331, 3505–3516 (2022). https://doi.org/10.1007/s10967-022-08390-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08390-2

Keywords

Navigation