Skip to main content
Log in

Novel polymer gel dosimeters based on N-Vinylcaprolactam for medical dosimetry

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A New polymer gel dosimeter containing N-Vinylcaprolactam monomer was prepared for radiotherapy. A medical linear accelerator was used to irradiate the gel samples to doses (2–20 Gy). A Minispec NMR relaxometer was used to measure the dose response. The results show the more amount of monomer in gel used, the higher dose sensitivity produced. Neither beam energy, nor dose rate show a visible influence on the irradiated gel and both data show a linear response fit up to 10 Gy. The unexposed as well as exposed gel samples are stable within 8 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Jin H, Palta J, Suh TS, Kim S (2008) A generalized a priori dose uncertainty model of IMRT delivery. Med Phys 35:982–996

    Article  PubMed  Google Scholar 

  2. Soliman YS (2014) Gamma-radiation induced synthesis of silver nanoparticles in gelatin and its application for radiotherapy dose measurements. Radiat Phys Chem 102:60–67

    Article  CAS  Google Scholar 

  3. Soliman YS, Beshir WB, Abdelgawad MH, Brauer-Krisch E, Abdel-Fattah AA (2019) Pergascript orange-based polymeric solution as a dosimeter for radiotherapy dosimetric validation. Phys Med 57:169–176

    Article  PubMed  Google Scholar 

  4. Al-jarrah A, Abdul Rahman A, Shahrim I, Razak N, Ababneh B, Tousi E (2016) Effect of inorganic salts and glucose additives on dose–response, melting point and mass density of genipin gel dosimeters. Phys Med 32(1):36–41

    Article  CAS  PubMed  Google Scholar 

  5. Valente M, Vedelago J, Chacón D, Mattea F, Velásquez J, Pérez P (2018) Water-equivalence of gel dosimeters for radiology medical imaging. Appl Radiat Isot 141:193–198

    Article  CAS  PubMed  Google Scholar 

  6. Abtahi SMM, Kargar Shaker Langaroodi R, Akbari ME (2020) Dose distribution verification in intraoperative radiation therapy using an N-isopropyl acrylamide-based polymer gel dosimeter. J Radioanal Nucl Chem 324,:481–488

    Article  CAS  Google Scholar 

  7. Van Dyk J, Barnett RB, Cygler JE, Shragge PC (1993) Commissioning and quality assurance of treatment planning computers. Inter J Radiat Oncol Biol Phys 26:261–273

    Article  Google Scholar 

  8. Schreiner LJ (2015) True 3D chemical dosimetry (gels, plastics): Development and clinical role. J Phys Conf Ser 573:012003

    Article  CAS  Google Scholar 

  9. Furuta T, Maeyama T, Ishikawa KL (2015) Comparison between Monte Carlo simulation and measurement with a 3D polymer gel dosimeter for dose distributions in biological samples. Phys Med Biol 60:6531–6546

    Article  CAS  PubMed  Google Scholar 

  10. Tachibana H, Watanabe Y, Mizukami S, Maeyama T, Terazaki T, Uehara R, Akimoto T (2020) End-to-end delivery quality assurance of computed tomography based high-dose-rate brachytherapy using a gel dosimeter. Brachytherapy 19(3):362–371

    Article  PubMed  Google Scholar 

  11. Chan M, Song Y, Meli J, Huang Y, Burman C (2006) TU-FF‐A1‐02: estimating dose to ICD outside the treatment fields using skin QED diode. Med Phys 33:2218–2218

    Article  Google Scholar 

  12. Hsu SH, Roberson PL, Chen Y, Marsh RB, Pierce LJ, Moran JM (2008) Assessment of skin dose for breast chest wall radiotherapy as a function of bolus material. Phys Med Biol 53:2593–2606

    Article  PubMed  Google Scholar 

  13. Adlienė D, Jakštas K, Urbonavičius BG (2015) In vivo TLD dose measurements in catheter-based high-dose-rate brachytherapy. Radiat Protect Dosim 165:477–481

    Article  CAS  Google Scholar 

  14. Falco MD, Masala S, Stefanini M, Fiori R, Gandini R, Bagalà P, Morosetti D, Calabria E, Tonnetti A, Verona-Rinati G, Santoni R (2015) Patient skin dose measurements using a cable free system MOSFETs based in fluoroscopically guided percutaneous vertebroplasty, percutaneous disc decompression, radiofrequency medial branch neurolysis, and endovascular critical limb ischemia. J Appl Clin Med Phys 16:298–310

    Article  PubMed Central  Google Scholar 

  15. Gallo S, Iacoviello G, Bartolotta A, Dondi D, Panzeca S, Marrale M (2017) ESR dosimeter material properties of phenols compound exposed to radiotherapeutic electron beams. Nuc Instrum Methods Phys Res Sect B 407:110–117

    Article  CAS  Google Scholar 

  16. Nakano M, Hill RF, Whitaker M, Kim JH, Kuncic Z (2012) A study of surface dosimetry for breast cancer radiotherapy treatments using Gafchromic EBT2 film. J Appl Clin Med Phys 13:83–97

    Article  PubMed Central  Google Scholar 

  17. Tamponi M, Bona R, Poggiu A, Marini P (2016) A new form of the calibration curve in radiochromic dosimetry. Properties and results. Med Phys 43:4435–4446

    Article  CAS  PubMed  Google Scholar 

  18. Santos T, Ventura T, Carmo Lopes M (2021) A review on radiochromic film dosimetry for dose verification in high energy photon beams. Radiat Phys. Chem, 179, p.109217

  19. Maeyama T, Ishida Y, Kudo Y, Fukasaku K, Ishikawa KL, Fukunishi N (2018) Polymer gel dosimeter with AQUAJOINT® as hydrogel matrix. Radiat Phys Chem 146:121–125

    Article  CAS  Google Scholar 

  20. Chacon D, Strumia M, Valente M, Mattea F (2018) Effect of inorganic salts and matrix crosslinking on the dose response of polymer gel dosimeters based on acrylamide. Radiat Meas 117:7–18

    Article  CAS  Google Scholar 

  21. Awad SI, Moftah B, Basfer A, Almousa AA, Al Kafi MA, Eyadeh MM, Rabaeh KA (2019) 3-D quality assurance in CyberKnife radiotherapy using a novel N-(3-methoxypropyl) acrylamide polymer gel dosimeter and optical CT. Radiat Phys Chem 161:34–41

    Article  CAS  Google Scholar 

  22. Rashidi A, Abtahi SMM, Saeedzadeh E, Akbari ME (2020) A new formulation of polymer gel dosimeter with reduced toxicity: dosimetric characteristics and radiological properties. Z Med Phys 30:185–193

    Article  PubMed  Google Scholar 

  23. Marrale M, d’Errico F (2021) Hydrogels for Three-Dimensional Ionizing-Radiation Dosimetry. Gels 7:74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maryanski M, Aude tC, Gore JC (1997) Effects of crosslinking and temperature on the dose response of a BANG polymer gel dosimeter. Phys Med Biol 42:303–311

    Article  CAS  PubMed  Google Scholar 

  25. Maryanski MJ, Gore JC, Kennan RP, Schulz RJ (1993) NMR relaxation enhancement in gels polymerized and cross-linked by ionizing radiation: a new approach to 3D dosimetry by MRI. Magn Reson Imaging 11:253–258

    Article  CAS  PubMed  Google Scholar 

  26. Maryanski MJ, Schulz RJ, Ibbott GS, Gatenby JC, Xie J, Horton D, Gore JC (1994) Magnetic resonance imaging of radiation dose distributions using a polymer-gel dosimeter. Phys Med Biol 39:1437–1455

    Article  CAS  PubMed  Google Scholar 

  27. Ibbott GS, Maryanski MJ, Eastman P, Holcomb SD, Zhang Y, Avison RG, Sanders M, Gore JC (1997) Three-dimensional visualization and measurement of conformal dose distributions using magnetic resonance imaging of BANG polymer gel dosimeters. Int J Radiat Oncol Biol Phys 38:1097–1103

    Article  CAS  PubMed  Google Scholar 

  28. De Deene Y, Baldock C (2002) Optimization of multiple spindashecho sequences for 3D polymer gel dosimetry. Phys Med Biol 47:3117–3141

    Article  PubMed  Google Scholar 

  29. Vandecasteele J, De Deene Y (2012) On the validity of 3D polymer gel dosimetry: III. MRI-related error sources. Phys Med Biol 58:63–85

    Article  PubMed  CAS  Google Scholar 

  30. Vandecasteele J, De Deene Y (2013) Evaluation of radiochromic gel dosimetry and polymer gel dosimetry in a clinical dose verification. Phys Med Biol 58(18):6241

    Article  PubMed  CAS  Google Scholar 

  31. Jaszczak M, Wach R, Maras P, Dudek M, Kozicki M (2018) Substituting gelatine with Pluronic F-127 matrix in 3D polymer gel dosimeters can improve nuclear magnetic resonance, thermal and optical properties. Phys Med Biol 6(17):175010

    Article  CAS  Google Scholar 

  32. Pappas E, Maris T (2020) Polymer gel 3D dosimetry in radiotherapy. Z Med Phys 30(3):171–172

    Article  PubMed  Google Scholar 

  33. Basfar AA, Moftah B, Rabaeh KA, Almousa A (2015) Novel composition of polymer gel dosimeters based on N-(Hydro-xymethyl) acrylamide for radiation therapy. Radiat Phys Chem 112:112–120

    Article  CAS  Google Scholar 

  34. Rabaeh KA, Basfar AA, Almousa AA, Devic S, Moftah B (2017) New normoxic N- (Hydroxymethyl) acrylamide based polymer gel for 3D dosimetry in radiation therapy. Phys Med 33:121–126

    Article  PubMed  Google Scholar 

  35. Rabaeh KA, Issra’ H, Oglat AA, Eyadeh MM, Abdel-Qader A, Aldweri FM, Awad SI (2021) Polymer gel containing N N′-methylenebis-acrylamide (BIS) as a single monomer for radiotherapy dosimetry. Radiat Phys Chem 187:109522

    Article  CAS  Google Scholar 

  36. Eyadeh MM, Smadi SA, Rabaeh KA, Oglat AA, Diamond KR (2021) Effect of lithium chloride inorganic salt on the performance of N-(Hydroxymethyl) acrylamide polymer-gel dosimeter in radiation therapy. J Radioanal Nucl Chem 330(3):1255–1261

    Article  CAS  Google Scholar 

  37. Koeva V, Olding T, Jirasek A, Schreiner L, McAuley K (2009) Preliminary investigation of the NMR, optical and x-ray CT dose– response of polymer gel dosimeters incorporating co solvents to improve dose sensitivity. Phys Med Biol 54:2779

    Article  CAS  PubMed  Google Scholar 

  38. Anaraki V, Abtahi S, Farhood B, Ejtemai-fard M (2018) A novel method for increasing the sensitivity of NIPAM polymer gel dosimeter. Radiat Phys Chem 153:35–43

    Article  CAS  Google Scholar 

  39. Trapp JV, Partridge M, Hansen VN (2004) The use of gel dosimetry for verification of electron and photon treatment plants in carcinoma of the scalp. Phys Med Biol 49:1625–1635

    Article  CAS  PubMed  Google Scholar 

  40. Hrbacek J, Spevacek V, Novotny J, Cechak T (2004) A comparative study of four polymer gel dosimeters. J Physics: J Phys Conf Ser 3:150–154

    CAS  Google Scholar 

  41. Rabaeh KA, Hammoudeh IME, Moftah B, Oglat AA, Eyadeh MM, Aldweri FM, Abdel-Qader AJ, Devic S (2022) A normoxic acrylic acid polymer gel for dosimetery in radiation therapy. J Radioanal Nucl Chem 330:665–672

    Article  CAS  Google Scholar 

  42. Gustavsson H, Back S, Lepage M, Rintoul L, Baldock C (2004) Development and optimization of a 2-hydroxyethylacrylate MRI polymer gel dosimeter. Phys Med Biol 49:227–241

    Article  CAS  PubMed  Google Scholar 

  43. Rabaeh KA, Saion E, Omer M, Shahrim I, Alrahman AA, Hussain M (2008) Enhancements in 3D dosimetry measurement using polymer gel and MRI. Radiat Meas 43(8):1377–1382

    Article  CAS  Google Scholar 

  44. Rabaeh KA, Saion E, Ali M, Shahrim I, Alrahman AA, Hussain M (2008) Rate of elapsed polymerization of hydroxyethylacrylate gel induced by gamma radiation. Nucl Sci Tech 19:218–222

    Article  CAS  Google Scholar 

  45. Pappas E, Maris T, Angelopoulos A, Paparigopoulou M, Sakelliou L, Sandilos P, Voyiatzi S, Vlachos L (1999) A new polymer gel for magnetic resonance imaging (MRI) radiation dosimetry. Phys Med Biol 44(10):2677–2684

    Article  CAS  PubMed  Google Scholar 

  46. Kozicki M, Maras P, Rybka K, Biegański T (2009) VIPARnd - GeVero® tool in planning of TPS scheduled brain tumour radiotherapy. J Phys Conf Ser 164:012061

    Article  Google Scholar 

  47. Kozicki M, Berg A, Maras P, Jaszczak M, Dudek M (2020) Clinical radiotherapy application of N-vinylpyrrolidone-containing 3D polymer gel dosimeters with remote external MR-reading. Phys Med 69:134–146

    Article  PubMed  Google Scholar 

  48. Watanabe Y, Mizukami S, Eguchi K, Maeyama T, Hayashi S, Muraishi H (2019) Dose distribution verification in high-dose-rate brachytherapy using a highly sensitive normoxic N-vinylpyrrolidone polymer gel dosimeter. Phys Med 57:72–79

    Article  PubMed  Google Scholar 

  49. Mattea F, Chacón D, Vedelago J, Valente M, Strumia MC (2015) Polymer gel dosimeter based on itaconic acid. Appl Radiat Isot 105:98–104

    Article  CAS  PubMed  Google Scholar 

  50. Farhood B, Abtahi SM, Geraily G, Ghorbani M, Mahdavim SR, Zahmatkesh MH (2018) Dosimetric characteristics of PASSAG as a new polymer gel dosimeter with negligible toxicity. Radiat Phys Chem 147:91–100

    Article  CAS  Google Scholar 

  51. Dorri Giv M, Majdaeen M, Yadollahi M, Abbaspour S, Sadrnia M, Haghighi Borujeni M et al 2022. Characterization of Improved PASSAG Polymer Gel Dosimeter Using Magnetic Resonance Imaging., 2022.Appl. Magn. Reson.53,441–455

  52. Moftah B, Basfar A, Almousa A, Al-Kaf A, Rabaeh K (2020) Novel 3D polymer gel dosimeters based on N-(3-Methoxypropyl) acrylamide (NMPAGAT) for quality assurance in radiation oncology. Radiat Measur 135:106372

    Article  CAS  Google Scholar 

  53. Eyadeh MM, Alshomali LS, Rabaeh KA, Oglat AA, Diamond KR (2022) Improvement on the performance N-(3-methoxypropyl)acrylamide polymer-gel dosimeter by the addition of inorganic salt for application in radiotherapy dosimetry. J Radioanal Nucl Chem 331:1343–1351

    Article  CAS  Google Scholar 

  54. Lotfy S, Basfar A, Moftah B, Al-Moussa A (2017) Comparative study of nuclear magnetic resonance and UV–visible spectroscopy dose-response of polymer gel based on N -(Isobutoxymethyl) acrylamide. Nuc Instrum Methods Phys Res Sect B 413:42V50

    Google Scholar 

  55. Rabaeh KA, Al-Ajaleen MS, Abuzayed MH, Aldweri FM, Eyadeh MM (2019) High dose sensitivity of N-(isobutoxymethyl) acrylamide polymer gel dosimeters with improved monomer solubility using acetone co-solvent. Nuc Instrum Methods Phys Res Sect B 442:67–72

    Article  CAS  Google Scholar 

  56. Rabaeh KA, Salmanm NMB, Aldweri FM, Saleh HH, Eyadehm MM, Awad SI, Oglat AA (2021) Substantial infuence of magnesium chloride inorganic salt (MgCl2) on the polymer dosimeter containing N-(Hydroxymethyl) acrylamide for radiation therapy. Result Phys 22:103862

    Article  Google Scholar 

  57. Rabaeh KA, Issra’ H, Eyadeh MM, Aldweri FM, Awad SI, Oglat AA, Shatnawi MTM (2021) Improved performance of N-(Hydroxymethyl) acrylamide gel dosimeter using potassium chloride for radiotherapy. Radiat Meas 142:106542

    Article  CAS  Google Scholar 

  58. Rabaeh KA, Al-Tarawneh RE, Eyadeh MM, Hammoudeh IME, Shatnawi MTM (2022) Improved Dose Response of N-(Hydroxymethyl)acrylamide Gel Dosimeter with Calcium Chloride for Radiotherapy. Gels. 8,78

  59. De Deene Y, Van De Walle R, Achten E, De Wagter C (1998) Mathematical analysis and experimental investigation of noise in quantitative magnetic resonance imaging applied in polymer gel dosimetry. Sig Process 70:85–101

    Article  Google Scholar 

  60. Baldock C, Lepage M, Bäck SÃJ, Murry PJ, Jayasekera PM, Porter D, Kron T (2001) Dose resolution in radiotherapy polymer gel dosimetry: effect of echo spacing in MRI pulse sequence. Phys Med Biol 46:449–460

    Article  Google Scholar 

  61. Deene Y, De, Baldock C (2002) Optimization of multiple spinndashecho sequences for 3D polymer gel dosimetry. Phys Med Biol 47:3117–3141

    Article  PubMed  Google Scholar 

  62. Pourfallah TA, Allahverdi M, Zahmatkesh MH (2012) Evaluation of the effects of inhomogeneities on dose profiles using polymer gel dosimeter and monte carlo simulation in gamma knife. Iran J Med Phys 9:1–8

    Google Scholar 

  63. Aliasgharzadeh A, Mohammadi A, Farhood B, Anaraki V, Mohseni M, Moradi H (2020) Improvement of the sensitivity of PASSAG polymer gel dosimeter by urea. Radiat Phys Chem 166:108470

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of Hashemite University (442–2019) in funding this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid A. Rabaeh.

Ethics declarations

Declarations on conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabaeh, K.A., Hammoudeh, I. & Eyadeh, M.M. Novel polymer gel dosimeters based on N-Vinylcaprolactam for medical dosimetry. J Radioanal Nucl Chem 331, 3147–3153 (2022). https://doi.org/10.1007/s10967-022-08361-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08361-7

Keywords

Navigation