Skip to main content
Log in

Synthesis of 198Au nanoparticles sub 10 nm due optimization on local dose by Monte Carlo simulations for cancer treatment

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

To enhance the biological effects of radiation damage in cancerous cells, we present an alternative approach to the use of gold nanoparticles (AuNP), focusing on the synthesis and characterization of highly monodisperse, spherical radioactive gold nanoparticles 198AuNP. The size of the AuNP size was optimized with the help of Geant4/TOPAS particle scattering simulations, and energy deposition per nm3 per decay for varying radii (2–10 nm) was evaluated. This work is the foundation for ongoing experimental work to evaluate cell death induced by 198AuNP which aims for the use of radioactive gold nanoparticles in cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. World Health Organisation (2020) Latest global cancer data: Cancer burden rises to 19.3 million new cases and 10.0 million cancer deaths in 2020. International Agency for Research on Cancer, pp 13–15

  2. Organization GWH (2018) Noncommunicable diseases - Country profiles 2018. World Health Organization

  3. Wang X, Yang L, Chen Z, Shin DM (2008) Application of nanotechnology in cancer therapy and imaging. CA: Cancer J Clin 58(2):97–110

    Google Scholar 

  4. Types of Cancer Treatment - National Cancer Institute

  5. Roy K, Lahiri S (2006) A green method for synthesis of radioactive gold nanoparticles. Green Chem 8(12):1063

    Article  CAS  Google Scholar 

  6. Kogel MJAvd (2009) Basic clinical radiobiology, vol 4th ed. Hodder Arnold

  7. Bromma K, Chithrani DB (2020) Advances in gold nanoparticle-based combined cancer therapy. Nanomaterials 10(9):1–25

    Article  CAS  Google Scholar 

  8. Dilalla V, Chaput G, Williams T, Sultanem K (2020) Radiotherapy side effects: integrating a survivorship clinical lens to better serve patients. Curr Oncol 27(2):107–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mohan G, AHTP, JAJ, SDKM, Narayanasamy A, Vellingiri B (2019) Recent advances in radiotherapy and its associated side effects in cancer-a review. J Basic Appl Zool 80(1)

  10. Javed R, Zia M, Naz S, Aisida SO, Ain Nu, Ao Q (2020) Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. J Nanobiotechnol 18(1):1–15

    Article  Google Scholar 

  11. Nurgali K, Jagoe RT, Abalo R (2018) Editorial: Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae? Front Pharmacol 9:1–3

    Article  CAS  Google Scholar 

  12. Pucci C, Martinelli C, Ciofani G (2019) Innovative approaches for cancer treatment current perspectives and new challenges. Ecancermedicalscience 13:1–26

    Article  Google Scholar 

  13. Mignani S, Shi X, Ceña V, Rodrigues J, Tomas H, Majoral JP (2021) Engineered non-invasive functionalized dendrimer/dendron-entrapped/complexed gold nanoparticles as a novel class of theranostic (radio)pharmaceuticals in cancer therapy. J Controlled Release 332:346–366

    Article  CAS  Google Scholar 

  14. Racca L, Cauda V (2021) Remotely activated nanoparticles for anticancer therapy. Springer, Singapore

    Google Scholar 

  15. van der Meel R, Sulheim E, Shi Y, Kiessling F, Mulder WJ, Lammers T (2019) Smart cancer nanomedicine. Nat Nanotechnol 14(11):1007–1017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Luo D, Wang X, Burda C, Basilion JP (2021) Recent development of gold nanoparticles as contrast agents for cancer diagnosis. Cancers 13(8)

  17. van der Zee J (2002) Heating the patient: A promising approach? Ann Oncol 13(8):1173–1184

    Article  PubMed  Google Scholar 

  18. Zhong J, Wen L, Yang S, Xiang L, Chen Q, Xing D (2015) Imaging-guided high-efficient photoacoustic tumor therapy with targeting gold nanorods. Nanomed Nanotechnol Biol Med 11(6):1499–1509

    Article  CAS  Google Scholar 

  19. Kim EM, Jeong HJ (2017) Current status and future direction of nanomedicine: focus on advanced biological and medical applications. Nucl Med Mol Imaging 51(2):106–117

    Article  CAS  PubMed  Google Scholar 

  20. Molina Higgins MC, Clifford DM, Rojas JV (2018) Au@TiO2 nanocomposites synthesized by X-ray radiolysis as potential radiosensitizers. Appl Surface Sci 427:702–710

    Article  CAS  Google Scholar 

  21. Molina Higgins M, Toro González M, Rojas J (2019) Enhanced X-rays degradation of methylene blue in the presence of gold microspheres. Radiat Phys Chem 156:73–80

    Article  CAS  Google Scholar 

  22. Molina Higgins MC, Rojas JV (2019) X-ray radiation enhancement of gold- TiO2 nanocomposites. Appl Surface Sci 480:1147–1155

    Article  CAS  Google Scholar 

  23. Cooper DR, Bekah D, Nadeau JL (2014) Gold nanoparticles and their alternatives for radiation therapy enhancement. Front Chem 2:1–13

    Article  CAS  Google Scholar 

  24. Chen Y, Yang J, Fu S, Wu J (2020) Gold nanoparticles as radiosensitizers in cancer radiotherapy. Int J Nanomed 15:9407–9430

    Article  CAS  Google Scholar 

  25. Xuan S, de Barros AOdS, Nunes RC, Ricci-Junior E, da Silva AX, Sahid M, Alencar LMR, dos Santos CC, Morandi V, Alexis F, Iram SH, Santos-Oliveira R (2020) Radioactive gold nanocluster (198-AuNCs) showed inhibitory effects on cancer cells lines. Artif Cells Nanomed Biotechnol 48(1):1214–1221

    Article  CAS  PubMed  Google Scholar 

  26. Zutta Villate JM, Hahn MB (2019) Radioactive gold nanoparticles for cancer treatment. Eur Phys J D 73:95

    Article  CAS  Google Scholar 

  27. Mazrou H, Idiri Z, Sidahmed T, Allab M (2010) MCNP5 evaluation of a response matrix of a Bonner Sphere Spectrometer with a high efficiency 6LiI (Eu) detector from 0.01 eV to 20 MeV neutrons. J Radioanal Nucl Chem 284(2):253–263

    Article  CAS  Google Scholar 

  28. Turkevich J (1985) Colloidal gold. Gold Bulletin 18(4):125–131

    Article  CAS  Google Scholar 

  29. Piella J, Bastús NG, Puntes V (2016) Size-Controlled Synthesis of Sub-10-nanometer Citrate-Stabilized Gold Nanoparticles and Related Optical Properties. Chem Mater 28(4):1066–1075

    Article  CAS  Google Scholar 

  30. Piella J, Bastús NG, Puntes V (2016) Suporting Information for: size-controlled synthesis of sub-10 nm citrate-stabilized gold nanoparticles and related optical properties. Chem Mater 28(4):p. acs.chemmater.5b04406

  31. Liang X, Zj Wang, Cj Liu (2010) Size-controlled synthesis of colloidal gold nanoparticles at room temperature under the influence of glow discharge. Nanoscale Res Lett 5(1):124–129

    Article  CAS  Google Scholar 

  32. ...Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G, Behner F, Bellagamba L, Boudreau J, Broglia L, Brunengo A, Burkhardt H, Chauvie S, Chuma J, Chytracek R, Cooperman G, Cosmo G, Degtyarenko P, Dell’Acqua A, Depaola G, Dietrich D, Enami R, Feliciello A, Ferguson C, Fesefeldt H, Folger G, Foppiano F, Forti A, Garelli S, Giani S, Giannitrapani R, Gibin D, Gomez Cadenas JJ, Gonzalez I, Gracia Abril G, Greeniaus G, Greiner W, Grichine V, Grossheim A, Guatelli S, Gumplinger P, Hamatsu R, Hashimoto K, Hasui H, Heikkinen A, Howard A, Ivanchenko V, Johnson A, Jones FW, Kallenbach J, Kanaya N, Kawabata M, Kawabata Y, Kawaguti M, Kelner S, Kent P, Kimura A, Kodama T, Kokoulin R, Kossov M, Kurashige H, Lamanna E, Lampen T, Lara V, Lefebure V, Lei F, Liendl M, Lockman W, Longo F, Magni S, Maire M, Medernach E, Minamimoto K, de Freitas P, Mora Morita Y, Murakami K, Nagamatu M, Nartallo R, Nieminen P, Nishimura T, Ohtsubo K, Okamura M, O’Neale S, Oohata Y, Paech K, Perl J, Pfeiffer A, Pia MG, Ranjard F, Rybin A, Sadilov S, di Salvo E, Santin G, Sasaki T, Savvas N, Sawada Y, Scherer S, Sei S, Sirotenko V, Smith D, Starkov N, Stoecker H, Sulkimo J, Takahata M, Tanaka S, Tcherniaev E, Safai Tehrani E, Tropeano M, Truscott P, Uno H, Urban L, Urban P, Verderi M, Walkden A, Wander W, Weber H, Wellisch JP, Wenaus T, Williams DC, Wright D, Yamada T, Yoshida H, Zschiesche D (2003) GEANT4 - A simulation toolkit. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506(3):250–303

  33. Incerti S et al (2010) Comparison of GEANT4 very low energy cross section models with experimental data in water. Med Phys 37:4692–4708

    Article  CAS  PubMed  Google Scholar 

  34. Perl J, Shin J, Schumann J, Faddegon B, Paganetti H (2012) TOPAS: an innovative proton Monte Carlo platform for research and clinical applications. Med Phys 39:6818–6837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schuemann J, McNamara AL, Ramos-Méndez J, Perl J, Held KD, Paganetti H, Incerti S, Faddegon B (2019) TOPAS-nBio: an extension to the TOPAS simulation toolkit for cellular and sub-cellular radiobiology. Radiat Res 191:125–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Byrne H, McNamara A, Kuncic Z (2019) Impact of nanoparticle clustering on dose radio-enhancement. Radiat Prot Dosimetry 183(1–2):50–54

    Article  CAS  PubMed  Google Scholar 

  37. Francis Z, Incerti S, Karamitros M, Tran HN, Villagrasa C (2011) Stopping power and ranges of electrons, protons and alpha particles in liquid water using the Geant4-DNA package. Nucl Instrum Methods Phys Res Sect B 269:2307–2311

    Article  CAS  Google Scholar 

  38. Hahn MB, Zutta Villate JM (2021) Combined cell and nanoparticle models for TOPAS to study radiation dose enhancement in cell organelles. Sci Rep 11(1):1–10

    Article  CAS  Google Scholar 

  39. Sakata D, Incerti S, Bordage MC, Lampe N, Okada S, Emfietzoglou D, Kyriakou I, Murakami K, Sasaki T, Tran H, Guatelli S, Ivantchenko VN (2016) An implementation of discrete electron transport models for gold in the Geant4 simulation toolkit. J Appl Phys 120:244901

    Article  CAS  Google Scholar 

  40. Sakata D, Kyriakou I, Okada S, Tran HN, Lampe N, Guatelli S, Bordage M-C, Ivanchenko V, Murakami K, Sasaki T, Emfietzoglou D, Incerti S (2018) Geant4-DNA track-structure simulations for gold nanoparticles: the importance of electron discrete models in nanometer volumes. Med Phys 45(5):2230–2242

    Article  CAS  PubMed  Google Scholar 

  41. Musolino SV (2002) Radionuclide and radiation protection data handbook. Health Phys 83(1):136

    Article  CAS  Google Scholar 

  42. Industries Canberra (2006) Genie 2000 Spectroscopy Software, tech. rep., Canberra Industries

  43. Seniwal B, Thipe VC, Singh S, Fonseca TC, de Freitas L Freitas (2021) Recent advances in brachytherapy using radioactive nanoparticles: an alternative to seed-based brachytherapy 11

  44. Seyfi F, Soleimani B, Hosseini MA, Rezvanifard M, Ahmadi M (2018) The feasibility of 198Au production in Isfahan MNSR research reactor through a multi-stage approach. J Radioanal Nucl Chem 316(2):435–441

    Article  CAS  Google Scholar 

  45. Golabian A, Hosseini MA, Ahmadi M, Soleimani B, Rezvanifard M (2018) The feasibility study of 177Lu production in Miniature Neutron Source Reactors using a multi-stage approach in Isfahan, Iran. Appl Radiat Isotopes 131:62–66

    Article  CAS  Google Scholar 

  46. Kalyane D, Raval N, Maheshwari R, Tambe V, Kalia K, Tekade RK (2019) Employment of enhanced permeability and retention effect (EPR): nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater Sci Eng C 98(January):1252–1276

    Article  CAS  Google Scholar 

  47. Priolisi O, Fabrizi A, Deon G, Bonollo F, Cattini S (2016) Morphology evolution of gold nanoparticles as function of time, temperature, and Au(III)/sodium ascorbate molar ratio. J Nanopart Res 18(1):1–13

    Article  CAS  Google Scholar 

  48. Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chem Rev 107(11):4797–4862

    Article  CAS  PubMed  Google Scholar 

  49. Papoff F, Hourahine B (2011) Geometrical Mie theory for resonances in nanoparticles of any shape. Opt Express 19(22):21432

    Article  CAS  PubMed  Google Scholar 

  50. Shafiqa AR, Aziz AA, Mehrdel B (2018) Nanoparticle optical properties: size dependence of a single gold spherical nanoparticle. J Phys: Conf Ser 1083(1)

  51. Liu C-C, Lin W-Z, Tsai S-T, Chang J-H, Hung Y-W, Hou S-Y (2018) Dichroic behavior of gold nanoparticles synthesized in aqueous solution with insufficient reducing agent. J Nanosci Nanotechnol 18(10):7197–7202

    Article  CAS  PubMed  Google Scholar 

  52. Mironava T, Hadjiargyrou M, Simon M, Jurukovski V, Rafailovich MH (2010) Gold nanoparticles cellular toxicity and recovery: effect of size, concentration and exposure time. Nanotoxicology 4(1):120–137

    Article  CAS  PubMed  Google Scholar 

  53. Sabella S, Carney RP, Brunetti V, Malvindi MA, Al-Juffali N, Vecchio G, Janes SM, Bakr OM, Cingolani R, Stellacci F, Pompa PP (2014) A general mechanism for intracellular toxicity of metal-containing nanoparticles. Nanoscale 6(12):7052–7061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Huo S, Jin S, Ma X, Xue X, Yang K, Kumar A, Wang PC, Zhang J, Hu Z, Liang XJ (2014) Ultrasmall gold nanoparticles as carriers for nucleus-based gene therapy due to size-dependent nuclear entry. ACS Nano 8(6):5852–5862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gregory J-OL, Choppin R, Rydberg J (2002) Radiochemistry and nuclear chemistry, vol 148. Butterworth-Heinemann, Butterwort

    Google Scholar 

  56. Hahn MB, Meyer S, Schröter M-A, Seitz H, Kunte H-J, Solomun T, Sturm H (2017) Direct electron irradiation of DNA in a fully aqueous environment. Damage determination in combination with Monte Carlo simulations. Phys Chem Chem Phys 19:1798–1805

    Article  CAS  PubMed  Google Scholar 

  57. Hahn MB, Meyer S, Kunte H-J, Solomun T, Sturm H (2017) Measurements and simulations of microscopic damage to DNA in water by 30 keV electrons: a general approach applicable to other radiation sources and biological targets. Phys Rev E 95:052419

    Article  PubMed  Google Scholar 

  58. Hahn MB, Dietrich PM, Radnik J (2021) In situ monitoring of the influence of water on DNA radiation damage by near-ambient pressure X-ray photoelectron spectroscopy. Commun Chem 4:12

    Article  CAS  Google Scholar 

  59. Azzam EI, Jay-Gerin JP, Pain D (2012) Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett 327(1–2):48–60

    Article  CAS  PubMed  Google Scholar 

  60. Özçelik S, Pratx G, Özçelik S (2020) Nuclear-targeted gold nanoparticles enhance cancer cell radiosensitization. Nanotechnology 31(41)

  61. Huang K, Ma H, Liu J, Huo S, Kumar A, Wei T, Zhang X, Jin S, Gan Y, Wang P, He S, Liang X (2012) Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular. ACS Nano 6(5):4483–4493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shi J, Kantoff PW, Wooster R, Farokhzad OC (2017) Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 17(1):20–37

    Article  CAS  PubMed  Google Scholar 

  63. Contera S, De La Serna JB, Tetley TD (2021) Biotechnology, nanotechnology and medicine. Emerg Top Life Sci 4(6):551–554

    Google Scholar 

  64. Guinart A, Perry HL, Wilton-Ely JD, Tetley TD (2021) Gold nanomaterials in the management of lung cancer. Emerg Top Life Sci 4(6):627–643

    Google Scholar 

Download references

Acknowledgements

This research was financed with the support of: the Mechanical and Nuclear Engineering Department from Virginia Commonwealth University (VCU) and Laboratorio de Bioanálisis from Universidad Nacional de Colombia. M.B.H. acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) 442240902/HA 8528/2-1 and from Bundesanstalt für Materialforschung und -prüfung (BAM).

Author information

Authors and Affiliations

Authors

Contributions

JMZV performed synthesis, characterization and optimization of the neutron activation of \(^{198}\mathrm{AuNP}\) and wrote the manuscript with input from all authors. MBH performed Geant4/TOPAS particle scattering simulations.

Corresponding author

Correspondence to Julián Mateo Zutta Villate.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villate, J.M.Z., Rojas, J.V., Hahn, M.B. et al. Synthesis of 198Au nanoparticles sub 10 nm due optimization on local dose by Monte Carlo simulations for cancer treatment. J Radioanal Nucl Chem 331, 3033–3041 (2022). https://doi.org/10.1007/s10967-022-08355-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08355-5

Keywords

Navigation