Skip to main content
Log in

Assessment of natural radiation levels in the forest ecosystem of Shankaraghatta-Shivamogga District, India

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The estimated mean value of activity of radionuclides (226Ra, 232Th, and 40K) in the forest environment of Shankaraghatta are 11.52 ± 1.6, 19.94 ± 2.08 and 164.67 ± 3.2 Bq kg−1 for soil, and for building materials 48.53 ± 1.99, 63.20 ± 2.48 and 470.47 ± 6.59 Bq kg−1 respectively. The average indoor and outdoor Gamma Absorbed Dose rate and total Annual Effective Dose rate are less than the global average values. The forest ecosystem influenced in reducing the natural ambient gamma radiation levels. The constructions materials used for roads enhanced it. The entire measured hazard indices are far below the criterion limit of unity except pink granite and ceramic tiles contains higher activity of radionuclides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abbasi A et al (2020) Radiation hazards and natural radioactivity levels in surface soil samples from dwelling areas of North Cyprus. J Radioanal Nucl Chem 324(1):203–210. https://doi.org/10.1007/s10967-020-07069-w

    Article  CAS  Google Scholar 

  2. UNSCEAR, Sérbia (2000) United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and effects of ionizing radiation 2

  3. UNSCEAR United Nations Scientific Committee on the Effects of Atomic Radiation on 10 September 2020.

  4. Abbasi A, Mirekhtiary SF (2020) Radiological impacts in the high-level natural radiation exposure area residents in the Ramsar, Iran. Eur Phys J Plus 135(3):1–11. https://doi.org/10.1140/epjp/s13360-020-00306-x

    Article  CAS  Google Scholar 

  5. Suresh S et al (2022) Estimation of natural radioactivity and assessment of radiation hazard indices in soil samples of Uttara Kannada district, Karnataka India. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-021-08145-5

    Article  Google Scholar 

  6. Tawfic AF et al (2021) Natural radioactivity levels and radiological implications in the high natural radiation area of Wadi El Reddah, Egypt. J Radioanal Nucl Chem 327(2):643–652. https://doi.org/10.1007/s10967-020-07554-2

    Article  CAS  Google Scholar 

  7. Sannappa J et al (2003) Study of background radiation dose in Mysore city, Karnataka State, India. Radiat Meas 37(1):55–65

    Article  CAS  Google Scholar 

  8. Ziajahromi S, Khanizadeh M, Nejadkoorki F (2015) Using the RESRAD code to assess human exposure risk to 226Ra, 232Th, and 40K in soil. Hum Ecol Risk Assess Int J 21(1):250–264. https://doi.org/10.1080/10807039.2014.909194

    Article  CAS  Google Scholar 

  9. Flodin U et al (1990) Acute myeloid leukaemia and background radiation in an expanded case-referent study. Arch Environ Health Int J 45(6):364–366. https://doi.org/10.1080/00039896.1990.10118756

    Article  CAS  Google Scholar 

  10. Ron E (1998) Ionizing radiation and cancer risk: evidence from epidemiology. Radiat Res 150(5):S30–S41. https://doi.org/10.2307/3579806

    Article  CAS  PubMed  Google Scholar 

  11. Ujjinappa BS et al (2021) Natural ambient gamma radiation levels, distribution of radionuclides, and evaluation of radiological hazards around Bellary thermal power plant, India. Environ Earth Sci 80(1):1–13

    Article  Google Scholar 

  12. Navas A, Soto J, Machın J (2002) 238U, 226Ra, 210Pb, 232Th and 40K activities in soil profiles of the Flyasch sector (Central Spanish Pyrenees). Appl Radiat Isot 57(4):579–589. https://doi.org/10.1016/S0969-8043(02)00131-8

    Article  CAS  PubMed  Google Scholar 

  13. Suresh S et al (2020) Measurement of radon concentration in drinking water and natural radioactivity in soil and their radiological hazards. J Radiat Res Appl Sci 13(1):12–26. https://doi.org/10.1080/16878507.2019.1693175

    Article  CAS  Google Scholar 

  14. Srinivasa E et al (2022) Natural radioactivity levels and associated radiation hazards in soil samples of Chikkamagaluru district, Karnataka, India. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-021-08133-9

    Article  Google Scholar 

  15. Government of India Ministry of Water Resources (2007) Central Ground Water Board. Ground Water Information Booklet Shimoga District, Karnataka

  16. Volchok HL, de Planque G (1983) EML procedures manual 26th edition. United States: N. p. Web

  17. Sannappa J, Ningappa C, Narasimha KN (2010) Natural radioactivity levels in granite regions of Karnataka State. http://nopr.niscair.res.in/handle/123456789/10487

  18. Ramasamy V, Murugesan S, Mullainathan S (2004) Gamma ray spectrometric analysis of primeval radionuclides in sediments of Cauvery River in Tamilnadu, India. Ecologica 2:83

    Google Scholar 

  19. Ahmed N, El-Arabi AGM (2005) Natural radioactivity in farm soil and phosphate fertilizer and its environmental implications in Qena governorate Upper Egypt. J Environ Radioact 84(1):51–64. https://doi.org/10.1016/j.jenvrad.2005.04.007

    Article  CAS  PubMed  Google Scholar 

  20. Aslam M et al (2002) Radiological significance of Pakistani marble used for construction of dwellings. J Radioanal Nucl Chem 253(3):483–487. https://doi.org/10.1023/a:1020438007471

    Article  CAS  Google Scholar 

  21. Yousef MI, Abu El-Ela A, Yousef HA (2007) Natural radioactivity levels in surface soil of Kitchener Drain in the Nile Delta of Egypt. J Nucl Radiat Phys 2(1):61–68

    Google Scholar 

  22. IAEA/RCA (1989) Regional workshop on Environmental sampling and measurement of radioactivity for monitoring purposes. Health Phys. Division, BARC, Kalpakkam, India, pp 85–95

  23. Nambi KSV et al (1987) Country-wide environmental radiation monitoring using thermoluminescence dosemeters. Radiat Prot Dosimetry 18(1):31–38

    CAS  Google Scholar 

  24. UNSCEAR (2000) Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation Report to the General Assembly, with scientific annexes

  25. UNSCEAR (2008) United Nations Scientific Committee on the effect of Atomic Radiation. 2008 report on the Sources and Effects of Ionizing Radiation. Report to the General Assembly with Scientific Annexes. United Nations, New York

  26. Beretka J, Mathew PJ (1985) Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys 48:87–95

    Article  CAS  Google Scholar 

  27. European Commission (1999) Radiation Protection 112, Radiological Protection Principles Concerning the Natural Radioactivity of Building Materials. European Commission

  28. Rao DD (2018) Use of hazard index parameters for assessment of radioactivity in soil: a view for change. Radiat Protect Environ 41(2):59

    Article  Google Scholar 

  29. Righi S, Bruzzi L (2006) Natural radioactivity and radon exhalation in building materials used in Italian dwellings. J Environ Radioact 88(2):158–170. https://doi.org/10.1016/j.jenvrad.2006.01.009

    Article  CAS  PubMed  Google Scholar 

  30. Fares S, Hassan AK, El-Saeedy HI (2017) Environmental Characterization and Natural Radioactivity Influential on the Mountains of the Red Sea Coast, Egypt. ChemXpress 10(1):119

    Google Scholar 

  31. Iqbal M, Tufail M, Mirza M (2000) Measurement of natural radioactivity in marble found in Pakistan using a NaI (Tl) gamma-ray spectrometer. J Environ Radioact 51:255–265

    Article  CAS  Google Scholar 

  32. Beck HL, DeCampo J, Gogolak C (1972) In Situ Ge(Li) And NaI(Tl) Gamma-Ray Spectrometry. United States: N. p., Web

  33. Ugbede FO, Echeweozo EO (2017) Estimation of annual effective dose and excess lifetime cancer risk from background ionizing radiation levels within and around quarry site in Okpoto–Ezillo, Ebonyi State, Nigeria. The land 7.12

  34. ICRP protection 103 (2007) Ann.ICRP 37(2–4)-F. The Recommendations of the International Commission on Radiological Protection

  35. Taskin H et al (2009) Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. J Environ Radioact. https://doi.org/10.1016/j.jenvrad.2008.10.012

    Article  PubMed  Google Scholar 

  36. Ningappa C, Sannappa J, Karunakara N (2008) Study on radionuclides in granite quarries of Bangalore rural district, Karnataka, India. Radiat Protect Dosim 131(4):495–502. https://doi.org/10.1093/rpd/ncn203

    Article  CAS  Google Scholar 

  37. Obasi I et al (2020) In situ measurement of radionuclide concentrations (238 U, 40K, 232 Th) in middle Cretaceous rocks in Abakaliki-Ishiagu areas, southeastern Nigeria. Arab J Geosci 13:1–9. https://doi.org/10.1007/s12517-020-05360-4

    Article  CAS  Google Scholar 

  38. Fakeha A (2012) Activity concentrations of natural radionuclides in sedimentary rocks from North of Arabian Shield (Hail), Saudi Arabia. Life Sci J 9:4

    Google Scholar 

  39. Srilatha MC, Rangaswamy DR, Sannappa J (2015) Measurement of natural radioactivity and radiation hazard assessment in the soil samples of Ramanagara and Tumkur districts, Karnataka-India. J Radioanal Nucl Chem 303:993–1003. https://doi.org/10.1007/s10967-014-3584-1

    Article  CAS  Google Scholar 

  40. Hameed PS et al (2014) Measurement of gamma radiation from rocks used as building material in Tiruchirappalli district, Tamil Nadu, India. J Radioanal Nucl Chem 300(3):1081–1088. https://doi.org/10.1007/s10967-014-3033-1

    Article  CAS  Google Scholar 

  41. Nace T (2016) Why granite colours range from white to black. Forbes (June 5, 2016)

  42. Chandrashekara MS, Veda SM, Paramesh L (2012) Studies on radiation dose due to radioactive elements present in ground water and soil samples around Mysore city, India. Radiat Prot Dosimetry 149(3):315–320

    Article  CAS  Google Scholar 

  43. Alkhomashi N, Almasoud FI, Alhorayess O, Alajayan TM, Alamah AS, Alssalim YA, Ababneh ZQ (2017) Assessment of radioactivity and trace elements of cement produced in Saudi Arabia. Environ Earth Sci 76:280. https://doi.org/10.1007/s12665-017-6605-x

    Article  CAS  Google Scholar 

  44. Abbasi A (2017) Modeling of lung cancer risk due to radon exhalation of granite stone in dwelling houses. J Cancer Res Ther 13(2):208. https://doi.org/10.4103/0973-1482.204851

    Article  CAS  PubMed  Google Scholar 

  45. Abbasi A (2013) Calculation of gamma radiation dose rate and radon concentration due to granites used as building materials in Iran. Radiat Prot Dosimetry 155(3):335–342. https://doi.org/10.1093/rpd/nct003

    Article  CAS  PubMed  Google Scholar 

  46. United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 1993 Report: Report to the General Assembly, with Scientific Annexes. United Nations, 1993

  47. International Commission on Radiological Protection (ICRP) 1990 Recommendations of Radiological Protection. ICR Publication 60, Pergamon Press, Oxford

  48. Johnson SS (1990) Natural Radiation; Heavy-mineral studies—Virginia Inner Continental Shelf, edited by C.R. Berquist, Jr

  49. Ghosh D et al (2008) Assessment of alpha activity of building materials commonly used in West Bengal, India. J Environ Radioact 99(2):316–321

    Article  CAS  Google Scholar 

  50. Malanca A, Pessina V, Dallara G (1993) Radionuclide content of building materials and gamma ray dose rates in dwellings of Rio Grande Do Norte, Brazil. Radiat Prot Dosimetry 48(2):199–203

    CAS  Google Scholar 

  51. Alencar AS, Freitas AC (2005) Reference levels of natural radioactivity for the beach sands in a Brazilian south eastern coastal region. Radiat Meas 40(1):76–83. https://doi.org/10.1016/j.radmeas.2004.08.003

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sannappa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dongre, S., Kumar, S., Suresh, S. et al. Assessment of natural radiation levels in the forest ecosystem of Shankaraghatta-Shivamogga District, India. J Radioanal Nucl Chem 331, 2825–2847 (2022). https://doi.org/10.1007/s10967-022-08354-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08354-6

Keywords

Navigation