Skip to main content
Log in

Soil-to-plant transfer factor for stable elements in lemon balm (Melissa officinalis L.) and estimates of the daily intakes

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This study evaluated the transfer factor (TF) of stable elements from soil to Melissa officinalis and the estimated daily intakes for potentially toxic elements. INAA, GFAAS, and ICP-OES techniques were applied to determine the elemental concentration. Br, Ca, Cd, K, Ni, and Rb accumulated the most with the TF (> 1.0), followed by Ba, Co, Cr, Cu, Mg, Mn, Na, Pb, Sb, and Zn (0.1–1.0), while As, Fe, Hf, La, Sc, Sm, Th, Ti, and V had the lowest accumulation (< 0.1). The daily intake (µg day− 1) of As (1.35–10.35), Br (22.5–297), Cd (0.09–0.54), Cr (220–1,270), Cu (31.5–76.5), Ni (0.09–0.54), Pb (4.5–31.5), and Zn (139.5–400.5) even overestimated was still lower than values established by WHO/FAO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zarei A, Changizi-Ashtiyani S, Taheri S, Hosseini N (2015) A Brief Overview of the Effects of Melissa officinalis L. Extract on the Function of Various Body Organs Zahedan. J Res Med Sci DOI. https://doi.org/10.17795/zjrms1007

    Article  Google Scholar 

  2. Miraj S, Rafieian-Kopaei, Kiani S (2016) Melissa officinalis L: A review study with an antioxidant prospective Evid. Based Complement Altern Med DOI. https://doi.org/10.1177/2156587216663433

    Article  Google Scholar 

  3. Weitzel C, Petersen M (2011) Cloning and characterisation of rosmarinic acid synthase from Melissa officinalis L. Phytochem DOI. https://doi.org/10.1016/j.phytochem.2011.01.039

  4. WHO (2007) WHO monographs on selected medicinal plants. WHO press, Geneva, Switzerland

    Google Scholar 

  5. Al Moaruf OA, Muibat OB, Asiata OI, Isiaka AO, Nureni OO (2004) Heavy trace metals and macronutrients status in herbal plants of Nigeria. Food Chem DOI. https://doi.org/10.1016/j.foodchem.2003.06.004

    Article  Google Scholar 

  6. Fei T, Dehong L, Fengqun Z, Junhua L, Hua T, Xiangzhong K (2010) Determination of trace elements in Chinese medicinal plants by instrumental neutron activation analysis. J Radioanal Nucl Chem DOI. https://doi.org/10.1007/s10967-010-0503-y

    Article  Google Scholar 

  7. Ebrahim AM, Eltayeb MH, Khalid H, Mohamed H, Abdalla W, Grill P, Michalke B (2012) Study on selected trace elements and heavy metals in some popular medicinal plants from Sudan. J Nat Med DOI. https://doi.org/10.1007/s11418-012-0630-6

    Article  Google Scholar 

  8. Stanojkovic-Sebic A, Pivic R, Josic D, Dinić Z, Stanojković A (2015) Heavy metals content in selected medicinal plants commonly used as components for herbal formulations. Tarim Bilim Derg DOI. https://doi.org/10.1501/Tarimbil_0000001334

    Article  Google Scholar 

  9. Shigeo U, Keiko T, Ikuko H (2007) Soil-to-Plant Transfer Factors of Stable Elements and Naturally Occurring Radionuclides (1) Upland Field Crops Collected in Japan. J Nucl Sci Technol DOI. https://doi.org/10.1080/18811248.2007.9711851

    Article  Google Scholar 

  10. Mbong E, Umoh O (2014) Soil plant heavy metal relations and transfer factor index of habitats densely distributed with Citrus reticulata (tangerine). J Res Environ Sci Toxicol DOI. https://doi.org/10.14303/jrest.2014.014

    Article  Google Scholar 

  11. Instituto Agronômico de Campinas [homepage internet]. Centro de Pesquisa e Desenvolvimento de Solos e Recursos Ambientais. https://www.iac.sp.gov.br/produtoseservicos/analisedosolo/retiraramostrasolo.php. Accessed 14 apr 2022

  12. Raij BV, Cantarella H, Quaggio JA, Furlani AMC (1997) Recomendações de adubação e calagem para o Estado de São Paulo. 2 ed. Campinas: IAC (Boletim técnico 100). http://www.etecsaosimao.com.br/_documentos/_pdf/_apoio_ao_aluno/_livros/BOLETIM_100_IAC_Completo.pdf. Accessed 14 apr 2022

  13. Thien BN, Ba VN, Man NT, Loan TTH (2021) Analysis of the soil to food crops transfer factor and risk assessment of multi-elements at the suburban area of Ho Chi Minh city, Vietnam using instrumental neutron activation analysis (INAA). J Environ Manage DOI. https://doi.org/10.1016/j.jenvman.2021.112637

    Article  Google Scholar 

  14. Yamashita C, Saiki M, Sertié J (2006) Elemental analysis of leaves and extracts of Casearia medicinal plants by instrumental neutron activation analysis. J Radioanal Nucl Chem DOI. https://doi.org/10.1007/s10967-006-0327-y

    Article  Google Scholar 

  15. Sussa FV, Damatto SR, Fávaro DIT, Mazzilli BP, Silva PSC (2009) Radioactive and stable elements’ concentration in medicinal plants from Brazil. J Radioanal Nucl Chem DOI. https://doi.org/10.1007/s10967-009-0126-3

    Article  Google Scholar 

  16. Zeiner M, Cindric IJ (2017) Review – trace determination of potentially toxic elements in (medicinal) plant materials Anal Methods DOI. https://doi.org/10.1039/C7AY00016B

  17. Moreira EG, Vasconcellos MBA, Saiki M (2005) Measurement uncertainty assessment in the Instrumental Neutron Activation Analysis of chromium, manganese, molybdenum, and nickel in stell. In: International Nuclear Atlantic Conference. Santos. INAC 2005. https://www.ipen.br/biblioteca/cd/inac/2005/full/Dica.pdf Accessed 19 apr 2022

  18. Shirisha K, Sahrawat KL, Devi PB, Wani SP (2014) Simple and Accurate Method for Routine Analysis of Heavy Metals in Soil, Plant, and Fertilizer Commun Soil Sci Plant Anal DOI. https://doi.org/10.1080/00103624.2014.911303

  19. Calvo DLO, Dominguez JCH, Ardaiz CW, Moreno CM (2008) Factores de Transferencia Suelos-Hojas del Ni en Melocotones. Posibles Alteraciones por la Bajada de pH del Suelo. Agricola Vergel 313:35–40

    Google Scholar 

  20. Peter B (1996) Ph.D. Thesis, Delft University of technology, The Netherlands

  21. Silveira PM, Cunha AA (2002) Variabilidade de micronutrientes, matéria orgânica e argila de um Latossolo submetido a sistemas de preparo Pesq Agropececu Bras DOI. https://doi.org/10.1590/S0100-204X2002000900017

  22. Ourives OEA, Souza GM, Tiritan CS, Santos DH (2010) Fertilizante orgânico como fonte de Fósforo no cultivo inicial de Brachiaria brizantha cv. Marandú Pesq Agropecu Trop DOI. https://doi.org/10.5216/pat.v40i2.5138

    Article  Google Scholar 

  23. CETESB (2021) Decisão de diretoria nº 125/2021/E - Aprovação da Atualização da Lista. de Valores Orientadores para Solo e Água Subterrânea, São Paulo

    Google Scholar 

  24. Silva PSC, Franscisconi LS, Gonçalves RDMR (2016) Evaluation of Major and Trace Elements in Medicinal Plants. J Braz Chem Soc DOI. https://doi.org/10.5935/0103-5053.20160123

    Article  Google Scholar 

  25. Petenatti ME, Petenatti EM, Del Vitto LA, Téves MR, Caffini NO, Marchevsky EJ, Pellerano RG (2011) Evaluation of macro and microminerals in crude drugs and infusions of five herbs widely used as sedatives Rev Braz Farmacog DOI. https://doi.org/10.1590/S0102-695X2011005000129

  26. Duke JA, Bogenschutz-Godwin MJ, duCellier J, Duke PAK (2002) Handbook of medicinal herbs. CRC Press, Florida, USA, Boca Raton

    Book  Google Scholar 

  27. Yaman C (2020) Lemon balm and sage herbal teas: Quantity and infusion time on the benefit of the content Cienc e Agrotecnologia DOI. https://doi.org/10.1590/1413-7054202044023220

  28. Caldeirão L, Sousa J, Nunes LCG, Godoy HT, Fernandes JO, Cunha SC (2021) Herbs and herbal infusions: Determination of natural contaminants (mycotoxins and trace elements) and evaluation of their exposure. Food Res Int DOI. https://doi.org/10.1016/j.foodres.2021.110322

    Article  Google Scholar 

  29. Kabata-Pendias A (2011) Trace elements in soils and plants, Taylor and Francis Group. LLC, Florida, U.S.A

    Google Scholar 

  30. Chen C, Huang D, Liu J (2009) Functions and Toxicity of Nickel in Plants: Recent Advances and Future Prospects Clean DOI. https://doi.org/10.1002/clen.200800199

  31. Jalali M, Meyari (2022) A Heavy metal contents, soil-to-plant transfer factors, and associated health risks in vegetables grown in western Iran. J Food Compost Anal DOI. https://doi.org/10.1016/j.jfca.2021.104316

    Article  Google Scholar 

  32. Glavač NK, Djogo S, Ražić S, Kreft S, Veber M (2017) Accumulation of heavy metals from soil in medicinal plants Arh Hig Rada Toksikol DOI. https://doi.org/10.1515/aiht-2017-68-2990

  33. Oluyemi EA, Feuyit G, Oyekunle JAO, Ogunfowokan AO (2008) Seasonal variations in heavy metal concentrations in soil and some selected crops at a landfill in Nigeria. Afr J Environ Sci Technol 2:89–96

    Google Scholar 

  34. Alam MGM, Snow ET, Tanaka A (2003) Arsenic and Heavy Metal Contamination of Vegetables Grown in Samta Village. Bangladesh Sci Total Environ DOI. https://doi.org/10.1016/S0048-9697(02)00651-4

    Article  Google Scholar 

  35. Trevizam AR, Villanueva FCA, Muraoka T, Filho VFN, Junior CHA (2010) Aplicação de fósforo para imobilização química do cádmio em solo contaminado Quim Nova DOI. https://doi.org/10.1590/S0100-40422010000600003

  36. Oliva SR, Espinosa AJF (2007) Monitoring of heavy metals in topsoils, atmospheric particles and plant leaves to identify possible contamination sources. Microchem J DOI. https://doi.org/10.1016/j.microc.2007.01.003

    Article  Google Scholar 

  37. Olowoyo JO, van Heerden E, Fisher JL, Baker C (2010) Trace metals in soil and leaves of Jacaranda mimosifolia in Tshwane area, South Africa Atmospheric Environ DOI. https://doi.org/10.1016/j.atmosenv.2010.01.048

  38. Rai PK, Lee SS, Zhang M, Tsang YF, Kim K (2019) Heavy Metals in Food Crops: Health Risk, Fate, Mechanisms, and Management Environ Int DOI. https://doi.org/10.1016/j.envint.2019.01.067

  39. Kim IS, Kang H, Kyung H, Jonhson-Green P, Lee EJ (2003) Investigation of heavy metal accumulation in Polygonum thunbergii for phytoextraction Environ Pollut DOI. https://doi.org/10.1016/s0269-7491(03)00190-8

  40. Begaa S, Messaoudi M (2018) Thermal neutron activation analysis of some toxic and trace chemical element contents in Mentha pulegium L. Radiochim Acta DOI. DOI:https://doi.org/10.1515/ract-2018-2942

    Article  Google Scholar 

  41. Agência Nacional de Vigilância Sanitária, Formulário de Fitoterápicos da Farmacopeia Brasileira, 2ª edição. https://www.gov.br/anvisa/pt-br/assuntos/farmacopeia/formulario-fitoterapico/arquivos/2021-fffb2-final-c-capa2.pdf. Accessed 24 Fev 2022

  42. WHO (1998) Quality Control Methods for Medicinal Plants Materials. WHO press, Geneva, Switzerland

    Google Scholar 

  43. FAO/WHO (1989) Evaluation of certain food additives and contaminants. Thirty-third Report of the Joint FAO/WHO Expert Committee on Food Additives. WHO technical Report Series. Geneva, Switzerland

  44. Muñoz O, Bastias JM, Araya M, Morales A, Orellana C, Rebolledo R, Velez D (2005) Estimation of the dietary intake of cadmium, lead, mercury, and arsenic by the population of Santiago (Chile) using a Total Diet Study Food Chem Toxicol DOI. https://doi.org/10.1016/j.fct.2005.05.006

  45. FAO/WHO (1993) Evaluation of certain food additives and contaminants. 41s Report of the Joint FAO/WHO Committee on Food Additives. Geneva, Switzerland

    Google Scholar 

  46. Joint FAO/WHO (1999) Expert Committee on Food Additives, World Health Organization, Food and Agriculture Organization of the United Nations & International Programme on Chemical Safety. Summary of evaluations performed by the Joint FAO/WHO Expert Committee on Food Additives (‎JECFA): 1956–1997. World Health Organization. (‎first through forty-ninth meetings)‎

  47. WHO (2013) Expert Committee on Biological Standardization; Meeting and World Health Organization. WHO Expert Committee on Biological Standardization. Sixty-Third Report; World Health Organization, Geneva, Switzerland

    Google Scholar 

Download references

Acknowledgements

The authors thank CNPq – Conselho Nacional de Desenvolvimento Científico e Tecnológico (The Brazilian National Research Council) for financial support (Process nº 141,977/2012-4) and IPEN-CNEN/SP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio Vitório Sussa.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sussa, F.V., Furlan, M.R., Victorino, M. et al. Soil-to-plant transfer factor for stable elements in lemon balm (Melissa officinalis L.) and estimates of the daily intakes. J Radioanal Nucl Chem 331, 3107–3115 (2022). https://doi.org/10.1007/s10967-022-08353-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08353-7

Keywords

Navigation