Skip to main content
Log in

Succinic acid functionalized magnetic mesoporous silica for the magnetic assisted separation of uranium from aqueous solution

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The magnetite embedded mesoporous silica was prepared and functionalized with succinic acid, (abbreviated as Fe-MCM-SUC) for targeted adsorption of uranium from aqueous solution. The adsorbent Fe-MCM-SUC was characterized with various advanced spectroscopic and analytical techniques and its adsorption performance towards uranium was evaluated under different conditions of aqueous medium. An apparent uranium adsorption capacity of 430 mg·g−1 was observed from pH ≥ 6 solution. The adsorbed uranium was recovered easily using dilute Na2CO3 solution and the recovered adsorbent was tested for uranium adsorption in multiple cycles for checking the feasibility of regeneration. The results showed that the adsorbent, Fe-MCM-SUC, is a potential candidate for the recovery of uranium from aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Todorov PT, Ilieva EN (2006) Contamination with uranium from natural and antropological sources. Rom Journ Phys 51:27–34

    CAS  Google Scholar 

  2. Coyte RM, Jain RC, Srivastava SK, Sharma KC, Khalil A, Ma L, Vengosh A (2018) Large-scale uranium contamination of groundwater resources in India. Environ Sci Technol Lett 5:341–347

    Article  CAS  Google Scholar 

  3. Abdelouas A, Lutze W, Nuttall HE (2018) Uranium Contamination in the Subsurface: Characterization and Remediation:. Uranium: Mineralogy, Geochemistry, and the Environment, Burns P C (ed) and Robert J (ed). Finch, Berlin, Boston: De Gruyter, 38:433–474.

  4. Bellis D, Ma R, Bramall N, McLeod CW, Chapman N, Satake K (2001) Airborne uranium contamination—as revealed through elemental and isotopic analysis of tree bark. Environ Pollut 114:383–387

    Article  CAS  PubMed  Google Scholar 

  5. Ho M, Obbard E, Burr PA, Yeoh G (2019) A review on the development of nuclear power reactors. Energy Procedia 160:459–466

    Article  CAS  Google Scholar 

  6. Belle J (ed). (1961) Uranium dioxide: properties and nuclear applications. Naval Reactors, Division of Reactor Development, US Atomic Energy Commission.

  7. Nero AV (1979) A guidebook to nuclear reactors. University of California Press

    Google Scholar 

  8. Santos EA, Ladeira AC (2011) Recovery of uranium from mine waste by leaching with carbonate-based reagents. Environ Sci Technol 45:3591–3597

    Article  CAS  PubMed  Google Scholar 

  9. Avasarala S, Lichtner PC, Ali AM, González-Pinzón R, Blake JM, Cerrato JM (2017) Reactive transport of U and V from abandoned uranium mine wastes. Environ Sci Technol 51:12385–12393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Martínez-Ruiz C, Marrs RH (2007) Some factors affecting successional change on uranium mine wastes: insights for ecological restoration. Appl Veg Sci 10:333–342

    Article  Google Scholar 

  11. https://www.who.int/water_sanitation_health/publications/2012/background_uranium.pdf.

  12. Sharma N, Singh J (2017) Human kidney and skeleton uranium burden, radiation dose and health risks from high uranium contents in drinking water of Bathinda district (Malwa region) of Punjab state. India Radiat Prot Dosim 176:242–251

    CAS  Google Scholar 

  13. Kaur S, Mehra R (2019) Toxicological risk assessment of protracted ingestion of uranium in groundwater. Environ Geochem Health 42:681–698

    Article  CAS  Google Scholar 

  14. Bangotra P, Sharma M, Mehra R, Jakhu R, Singh A, Gautam AS, Gautam S (2021) A systematic study of uranium retention in human organs and quantification of radiological and chemical doses from uranium ingestion. Environ Technol Innov 21:101360

    Article  CAS  Google Scholar 

  15. Gavrilescu M, Pavel LV, Cretescu I (2009) Characterization and remediation of soils contaminated with uranium. J Hazard Mater 163:475–510

    Article  CAS  PubMed  Google Scholar 

  16. Manobala T, Shukla SK, Rao TS, Kumar MD (2019) A new uranium bioremediation approach using radio-tolerant Deinococcus radiodurans biofilm. J Biosci 122:1–9

    Google Scholar 

  17. Gregory KB, Lovley DR (2005) Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ Sci Technol 39:8943–8947

    Article  CAS  PubMed  Google Scholar 

  18. Mohamud H, Ivanov P, Russell BC, Regan PH, Ward NI (2018) Selective sorption of uranium from aqueous solution by graphene oxide-modified materials. J Radioanal Nucl Chem 316:839–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Amesh P, Suneesh AS, Selvan BR, Venkatesan KA, Chandra M (2020) Magnetic assisted separation of uranium (VI) from aqueous phase using diethylenetriamine modified high capacity iron oxide adsorbent. J Environ Chem Eng 8:103661

    Article  CAS  Google Scholar 

  20. Dan H, Chen L, Xian Q, Yi F, Ding Y (2019) Tailored synthesis of SBA-15 rods using different types of acids and its application in adsorption of uranium. Sep Purif Technol 210:491–496

    Article  CAS  Google Scholar 

  21. Ding Y, Xian Q, Wang E, He X, Jiang Z, Dan H, Zhu W (2020) Mesoporous MnO 2/SBA-15 as a synergetic adsorbent for enhanced uranium adsorption. New J Chem 44:13707–13715

    Article  CAS  Google Scholar 

  22. Chen L, Yang W, He X, Wang E, Xian Q, Dan H, Zhu W, Ding Y (2020) A convenient one-step synthesis of mesoporous ZrO 2/SBA-15 and its uranium adsorption properties. J Radioanal Nucl Chem 326:1027–1037

    Article  CAS  Google Scholar 

  23. Abdel-Magied AF (2017) Solid phase extraction of uranium from phosphoric acid: kinetic and thermodynamic study. Radiochim Acta 105:813–820

    Article  CAS  Google Scholar 

  24. Amesh P, Venkatesan KA, Suneesh AS, Samanta N (2020) Diethylenetriamine tethered mesoporous silica for the sequestration of uranium from aqueous solution and seawater. J Environ Chem Eng 8:103995

    Article  CAS  Google Scholar 

  25. Wang H, Ma L, Cao K, Geng J, Liu J, Song Q, Yang X, Li S (2012) Selective solid-phase extraction of uranium by salicylideneimine-functionalized hydrothermal carbon. J Hazard Mater 229:321–330

    Article  PubMed  CAS  Google Scholar 

  26. Zhao Y, Liu C, Feng M, Chen Z, Li S, Tian G, Wang L, Huang J, Li S (2010) Solid phase extraction of uranium (VI) onto benzoylthiourea-anchored activated carbon. J Hazard Mater 176:119–124

    Article  CAS  PubMed  Google Scholar 

  27. Amesh P, Venkatesan KA, Suneesh AS, Gupta DK, Ravindran TR (2021) Diethylenetriamine functionalized silica gel for adsorption of uranium from aqueous solution and seawater. J Radioanal Nucl Chem 329:337–349

    Article  CAS  Google Scholar 

  28. Ayata S, Merdivan M (2010) p-tert-Butylcalix [8] arene loaded silica gel for preconcentration of uranium (VI) via solid phase extraction. J Radioanal Nucl Chem 283:603–607

    Article  CAS  Google Scholar 

  29. Sylwester ER, Hudson EA, Allen PG (2000) The structure of uranium (VI) sorption complexes on silica, alumina, and montmorillonite. Geochim Cosmochim Acta 64:2431–2438

    Article  CAS  Google Scholar 

  30. Amesh P, Suneesh AS, Selvan BR, Venkatesan KA (2019) Amidic succinic acid moiety anchored silica gel for the extraction of UO22+ from aqueous medium and simulated sea water. Colloids Surf A: Physicochem Eng Asp 578:123585

    Article  CAS  Google Scholar 

  31. Amesh P, Suneesh AS, Venkatesan KA, Chandra M, Ravindranath NA (2020) High capacity amidic succinic acid functionalized mesoporous silica for the adsorption of uranium. Colloids Surf A: Physicochem Eng Asp 602:125053

    Article  CAS  Google Scholar 

  32. Zhao Y, Li J, Zhang S, Wang X (2014) Amidoxime-functionalized magnetic mesoporous silica for selective sorption of U (VI). RSC Adv 62:32710–32717

    Article  CAS  Google Scholar 

  33. Li D, Egodawatte S, Kaplan DI, Larsen SC, Serkiz SM, Seaman JC (2016) Functionalized magnetic mesoporous silica nanoparticles for U removal from low and high pH groundwater. J Hazard Mater 317:494–502

    Article  CAS  PubMed  Google Scholar 

  34. Zhou L, Ouyang J, Liu Z, Huang G, Wang Y, Li Z, Adesina AA (2019) Highly efficient sorption of U (VI) from aqueous solution using amino/amine-functionalized magnetic mesoporous silica nanospheres. J Radioanal Nucl Chem 319:987–995

    Article  CAS  Google Scholar 

  35. Amesh P, Venkatesan KA, Suneesh AS, Gupta DK, Ravindran TR (2021) Adsorption of uranium by diethylenetriamine functionalized magnetic mesoporous silica. Environ Nanotechnol Monit Manag 16:100583

    Google Scholar 

  36. Bailey EH, Mosselmans JF, Schofield PF (2004) Uranyl acetate speciation in aqueous solutions—an XAS study between 25° C and 250° C. Geochim Cosmochim Acta 68:1711–1722

    Article  CAS  Google Scholar 

  37. Venkatesan KA, Sukumaran V, Antony MP, Rao PV (2004) Extraction of uranium by amine, amide and benzamide grafted covalently on silica gel. J Radioanal Nucl Chem 260:443–450

    Article  CAS  Google Scholar 

  38. Saha B, Venkatesan KA, Natarajan R, Antony MP, Rao PV (2002) Studies on the extraction of uranium by N-octanoyl-N-phenylhydroxamic acid. Radiochim Acta 90:455–459

    Article  CAS  Google Scholar 

  39. Khan MH, Warwick P, Evans N (2006) Spectrophotometric determination of uranium with arsenazo-III in perchloric acid. Chemosphere 63:1165–1169

    Article  CAS  PubMed  Google Scholar 

  40. Bruce IJ, Taylor J, Todd M, Davies MJ, Borioni E, Sangregorio C, Sen T (2004) Synthesis, characterisation and application of silica-magnetite nanocomposites. J Magn Magn Mater 284:145–160

    Article  CAS  Google Scholar 

  41. Zamani F, Izadi E (2014) Polyvinyl amine coated Fe3O4@ SiO2 magnetic microspheres for Knoevenagel condensation. Chinese J Catal 35:21–27

    Article  CAS  Google Scholar 

  42. Shebanova ON, Lazor P (2003) Raman study of magnetite (Fe3O4): laser-induced thermal effects and oxidation. J Raman Spectrosc 34:845–852

    Article  CAS  Google Scholar 

  43. Nasrazadani S, Namduri H (2006) Study of phase transformation in iron oxides using laser induced breakdown spectroscopy. Spectrochim Acta B 61:565–571

    Article  CAS  Google Scholar 

  44. Ferreira NM, Ferro MC, Gaspar G, Fernandes AJ, Valente MA, Costa FM (2020) Laser-induced Hematite/Magnetite phase transformation. J Electron Mater 49:7187–7193

    Article  CAS  Google Scholar 

  45. Kenneth SW (1993) Physisorption of nitrogen and oxygen by MCM-41, a model mesoporous adsorbent. J Chem Soc Chem Commun 16:1257–1258

    Google Scholar 

  46. Branton PJ, Hall PG, Sing KS, Reichert H, Schüth F, Unger KK (1994) Physisorption of argon, nitrogen and oxygen by MCM-41, a model mesoporous adsorbent. J Chem Soc Faraday Trans 90:2965–2967

    Article  CAS  Google Scholar 

  47. Renzo FD, Cambon H, Dutartre R (1997) A 28-year-old synthesis of micelle-templated mesoporous silica. Microporous Mater 10:283–286

    Article  Google Scholar 

  48. Vojoudi H, Badiei A, Bahar S, Ziarani GM, Faridbod F, Ganjali MRA (2017) new nano-sorbent for fast and efficient removal of heavy metals from aqueous solutions based on modification of magnetic mesoporous silica nanospheres. J Magn Magn Mater 441:193–203

    Article  CAS  Google Scholar 

  49. Bai L, Duan S, Jiang W, Liu M, Wang S, Sang M, Gong X, Li J, Xuan S (2017) High performance polydopamine-functionalized mesoporous silica nanospheres for U (VI) removal. Appl Surf Sci 426:1121–1132

    Article  CAS  Google Scholar 

  50. Wang J, Tong X, Chen Y, Sun T, Liang L, Wang C (2020) Enhanced removal of Cr (III) in high salt organic wastewater by EDTA modified magnetic mesoporous silica. Microporous and Mesoporous Mater 303:110262

    Article  CAS  Google Scholar 

  51. Guo Y, Chen B, Zhao Y, Yang T (2021) Fabrication of the magnetic mesoporous silica Fe-MCM-41-A as efficient adsorbent: performance, kinetics and mechanism. Sci Rep 11:1–2

    CAS  Google Scholar 

  52. Beagan AM, Alghamdi AA, Lahmadi SS, Halwani MA, Almeataq MS, Alhazaa AN, Alotaibi KM, Alswieleh AM (2021) Folic acid-terminated poly (2-diethyl amino ethyl methacrylate) brush-gated magnetic mesoporous nanoparticles as a smart drug delivery system. Polymers 13:59

    Article  CAS  Google Scholar 

  53. Zhang Y, Yue Q, Zagho MM, Zhang J, Elzatahry AA, Jiang Y, Deng Y (2019) Core-Shell magnetic Mesoporous silica microspheres with large Mesopores for enzyme immobilization in biocatalysis. ACS Appl Mater Interf 11:10356–10363

    Article  CAS  Google Scholar 

  54. Valenzuela R, Fuentes MC, Parra C, Baeza J, Duran N, Sharma SK, Knobel M, Freer J (2009) Influence of stirring velocity on the synthesis of magnetite nanoparticles (Fe3O4) by the co-precipitation method. J Alloys Compd 488:227–231

    Article  CAS  Google Scholar 

  55. Corbett JF (1972) Pseudo first-order kinetics. J Chem Educ 49:663

    Article  CAS  Google Scholar 

  56. Lagergren SK (1898) About the theory of so-called adsorption of soluble substances. Sven Vetenskapsakad Handingarl 24:1–39

    Google Scholar 

  57. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process biochem 34:451–465

    Article  CAS  Google Scholar 

  58. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  59. Freundlich H (1926) Freundlich isotherms.Colloidal and capillary chemistry.

  60. Temkin MJ Pyzhev V (1940) "Recent modifications to Langmuir isotherms." 217–222.

  61. Hutson ND, Yang RT (1997) Theoretical basis for the Dubinin-Radushkevitch (DR) adsorption isotherm equation. Adsorption 3:189–195

    Article  CAS  Google Scholar 

  62. Amesh P, Suneesh AS, Venkatesan KA, Maheswari RU, Vijayalakshmi S (2020) Preparation and ion exchange studies of cesium and strontium on sodium iron titanate. Sep Purif Technol 238:116393

    Article  CAS  Google Scholar 

  63. Quiles F, Burneau A (1998) Infrared and Raman spectroscopic study of uranyl complexes: hydroxide and acetate derivatives in aqueous solution. Vib Spectrosc 18:61–75

    Article  CAS  Google Scholar 

  64. Reitz T, Rossberg A, Barkleit A, Steudtner R, Selenska-Pobell S, Merroun ML (2015) Spectroscopic study on uranyl carboxylate complexes formed at the surface layer of Sulfolobus acidocaldarius. Dalton Trans 44:2684–2692

    Article  CAS  PubMed  Google Scholar 

  65. Gorelik VS, Anik’ev AA, Korshunov VM, Voinov YP (2017) Probe Raman spectroscopy of sodium uranyl-acetate microcrystals. Opt. Spectrosc. 123:255–257

    Article  CAS  Google Scholar 

  66. Zhao Y, Li J, Zhang S, Wang X (2014) Amidoxime-functionalized magnetic mesoporous silica for selective sorption of U (VI). RSC adv 4:32710–32717

    Article  CAS  Google Scholar 

  67. Amesh P, Venkatesan KA, Suneesh AS, Gupta DK, Ravindran TR (2021) Adsorption of uranium by diethylenetriamine functionalized magnetic mesoporous silica. Environ Nanotechnol, Monitor Manag 16:100583

    Article  Google Scholar 

Download references

Acknowledgements

The authors also thank to Dr. Manish Chnadra for recording SEM images, Mrs D. Annie for XRD, Mr. G. Jogeswara Rao for particle size analysis, and Mrs Hema kumari and Ms Athira Ravi for assisting in recording TEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A.Venkatesan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1946 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amesh, P., A.Venkatesan, K., Suneesh, A.S. et al. Succinic acid functionalized magnetic mesoporous silica for the magnetic assisted separation of uranium from aqueous solution. J Radioanal Nucl Chem 331, 2719–2733 (2022). https://doi.org/10.1007/s10967-022-08336-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08336-8

Keywords

Navigation