Skip to main content
Log in

Mining treatment effects on natural radioactivity and radiological hazard index assessment in phosphates and fertilizers used in Algeria

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Activities of 226Ra, 232Th and 40K contained in phosphate ores and granular fertilizer samples were determined using two different gamma-ray spectrometry detectors. The influence of treatment processes on the radioactivity in phosphates mine in each mining step in the dry and wet process were evaluated. Total absorbed dose rates in air and external annual effective dose rates were calculated from the activities of the three radionuclides. Excess lifetime cancer risks due to phosphate ores and fertilizers, radiation hazard indices (Raeq, Hex, Hin and Iγr) were also calculated. Our findings indicate that the obtained values are higher than recommended standard limits. Results obtained were discussed and compared with those reported in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8

Similar content being viewed by others

References

  1. Bezzi N, Aıfa T, Hamoudi S, Merabet D (2012) Trace elements of kef Es sennoun natural phosphate (Djebel Onk, Algeria) and how they affect the various mineralurgic modes of treatment. Procedia Eng 42:1915–1927

    Article  CAS  Google Scholar 

  2. Boumala D, Mavon C, Belafrites A, Tedjani A, Groetz JE (2018) Evaluation of radionuclide concentrations and external gamma radiation levels in phosphate ores and fertilizers commonly used in Algeria. J Radioanal Nucl Chem 317:501–510

    Article  CAS  Google Scholar 

  3. Tahri T, Bouzenzana A, Bezzi N (2019) Characterization and homogenization of bled el-hadba phosphate ore, case of djebel onk (algeria). Sci Bull Nat Min Univ. 28:35

    Google Scholar 

  4. Vogiannis EG, Nikolopoulos D (2015) Radon sources and associated risk in terms of exposure and dose. Front Public Health 2:207

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sahu S, Ajmal P, Bhangare R, Tiwari M, Pandit G (2014) Natural radioactivity assessment of a phosphate fertilizer plant area. J Rad Res Appl Sci 7:123–128

    CAS  Google Scholar 

  6. USGS P (2014). Mineral commodity summaries, 2012. Accessed on August 4th.

  7. Abdellali B (2007) Recovery and valorisation by flotation of treatment rejections to the phosphates case of djebel-onk algeria. J Appl Sci 7:2551–2559

    Article  CAS  Google Scholar 

  8. Boumaza B, Kechiched R, Chekushina TV (2021) Trace metal elements in phosphate rock wastes from the djebel onk mining area (Tébessa, eastern Algeria): a geochemical study and environmental implications. Applied Geochemistry 127:104910

    Article  CAS  Google Scholar 

  9. Bouzenzana A (2013) Harmful elements in concentrates them of phosphate and method of disposal case of ”jebel-onk” algeria. J Ore Dress 15:24

    Google Scholar 

  10. Tedjani A, Mavon C, Belafrites A, Degrelle D, Boumala D, Rius D, Groetz JE (2016) Well GeHp detector calibration for environmental measurements using reference materials. Nucl Instrum Meth Phys Res, Sect A 838:12–17

    Article  CAS  Google Scholar 

  11. Degrelle D (2017) Caractérisation numérique de la technique de spectrométrie gamma par simulation Monte-Carlo. Application à la datation d’échantillons envrionnementaux. Ph.D Thesis. Université Bourgogne Franche Comté. URL : https://tel.archives-ouvertes.fr/tel-01794979.

  12. Palusova V, Breier R, Chauveau E, Piquemal F, Povinec P (2020) Natural radionuclides as background sources in the modane underground laboratory. J Environm Radioactivity 216:106185

    Article  CAS  Google Scholar 

  13. Degrelle D, Mavon C, Groetz JE (2016) Determination of mass attenuation coefficient by numerical absorption calibration with Monte Carlo simulations at 59.54 keV. Nucl Instrum Methods Phys Res, Sect A 816:47–52

    Article  CAS  Google Scholar 

  14. Tufail M et al (2011) Radiological hazards of Tenorm in precipitated calcium carbonate generated as waste at nitrophosphate fertilizer plant in Pakistan. J Hazard Mater 192:78–85

    PubMed  Google Scholar 

  15. Boukhenfouf W, Boucenna A (2011) The radioactivity measurements in soils and fertilizers using gamma spectrometry technique. J Environ Radioact 102:336–339

    Article  CAS  PubMed  Google Scholar 

  16. Gilmore G (2008) Practical gamma-ray spectroscopy John Wiley & Sons

  17. UNSCEAR 2000 Report Vol. 1, 2000. Sources and effects of ionizing radiation. United Nations, New York

  18. Hassan NM, Mansour NA, Fayez-Hassan M, Sedqy E (2016) Assessment of natural radioactivity in fertilizers and phosphate ores in egypt. J Taibah Univ Sci 10:296–306

    Article  Google Scholar 

  19. Shakhashiro A, Tarjan S, Ceccatelli A, Kis-Benedek G, Betti M (2012) IAEA-447: a new certified reference material for environmental radioactivity measurements. Appl Rad Isotopes 70:1632–1643

    Article  CAS  Google Scholar 

  20. UNSCEAR 2008 Report Vol. 1, 2008. Sources and effects of ionizing radiations. Annex B Exposures of the public and workers from various sources of radiation. United Nations, New York

  21. Taskin H, Karavus M, Ay P, Topuzoglu A, Hidiroglu S, Karahan G (2009) Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. J Environ Radioact 100:49–53

    Article  CAS  PubMed  Google Scholar 

  22. Beretka J, Mathew P (1985) Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys 48:87–95

    Article  CAS  PubMed  Google Scholar 

  23. Turhan S, Baykan U, Sen K (2008) Measurement of the natural radioactivity in building materials used in Ankara and assessment of external doses. J Radiol Prot. 28:83

    Article  CAS  PubMed  Google Scholar 

  24. Hassan NN, Khoo KS (2014) Measurement of natural radioactivity and assessment of radiation hazard indices in soil samples at pengerang, kota tinggi, johor. In: AIP Conference Proceedings, American Institute of Physics. pp. 190–195.

  25. Rafique M, Rehman H, Malik F, Rajput MU, Rahman SU, Rathore MH (2011) Assessment of radiological hazards due to soil and building materials used in Mirpur Azad Kashmir. Pakistan Int J Radiat Res 9(2):77–87

    Google Scholar 

  26. Tsabaris C, Androulakaki E, Alexakis S, Patiris D (2018) An in-situ gamma-ray spectrometer for the deep ocean. Appl Radiat Isot 142:120–127

    Article  CAS  PubMed  Google Scholar 

  27. Ishimori Y, Lange K, Martin P, Mayya Y, Phaneuf M (2013) Measurement and calculation of radon releases from norm residues

  28. Thamer BJ, Nielson KK, Felthauser K (1981). Effects of moisture on radon emanation including the effects on diffusion. Open file report oct 79-nov 81 URL: https://www.osti.gov/biblio/6349091.

  29. Bossus D (1984) Emanating power and specific surface area. Radiat Prot Dosimetry 7:73–76

    Article  CAS  Google Scholar 

  30. Choukri A (1987) Mise au point d’une méthode d’analyse radiométrique applicable aux phosphates marocains. Etude des teneurs en Uranium, des rapports d’équilibre U/Ra et des taux d’émanation du 222Rn. Thèse de 3eme Cycle, Université Med V, Rabat.

  31. Pellegrini D (1997) Etude de l’émanation du radon à partir de résidus de traitement de minerais d’uranium. Mise en évidence de relations entre le facteur d’émanation et les caractéristiques du matériau. Ph.D. thesis. Besançon.

  32. Barton T, Ziemer P (1986) The effects of particle size and moisture content on the emanation of radon from coal ash. Health Phys 50:581–588

    Article  CAS  PubMed  Google Scholar 

  33. Maraziotis E (1987) Theoretical evaluation of the 222Rn emanation coefficient for coal fly ash. Health Phys 52:297–302

    Article  CAS  PubMed  Google Scholar 

  34. Gourdier J, Bussiere P, Imelik B (1967) The relationship between emanating powder and specific surface of finely divided solids and its use in investigating the kinetics of sintering. Compt Rend Acad Sci 264:1625–1628

    CAS  Google Scholar 

  35. Loyen J, Brassac A (2011) Evaluation de la qualité radiologique des eaux potables en France, données obtenues par l’IRSN en 2010. European J Water Quality 42:7–24

    Article  CAS  Google Scholar 

  36. Alzahrani J, Alharbi W, Abbady AG (2011) Radiological impacts of natural radioactivity and heat generation by radioactive decay of phosphorite deposits from northwestern saudi arabia. Aust J Basic Appl Sci 5:683–690

    CAS  Google Scholar 

  37. El-Taher A, Makhluf S (2010) Natural radioactivity levels in phosphate fertilizer and its environmental implications in assuit governorate, Upper Egypt. Indian J Pure Appl Phys 48:697–702

    CAS  Google Scholar 

  38. Chang B, Koh S, Kim Y, Seo J, Yoon Y, Row J, Lee D (2008) Nationwide survey on the natural radionuclides in industrial raw minerals in South Korea. J Environ Radioact 99:455–460

    Article  CAS  PubMed  Google Scholar 

  39. Da Conceicao FT, Bonotto DM (2006) Radionuclides, heavy metals and fluorine incidence at tapira phosphate rocks, Brazil, and their industrial (by) products. Environ Pollut 139:232–243

    Article  PubMed  CAS  Google Scholar 

  40. Ogunleye P, Mayaki M, Amapu I (2002) Radioactivity and heavy metal composition of nigerian phosphate rocks: possible environmental implications. J Environ Radioact 62:39–48

    Article  CAS  PubMed  Google Scholar 

  41. Sam AK, Ahamed MM, El Khangi F, El Nigumi Y, Holm E (1999) Radiological and chemical assessment of uro and kurun rock phosphates. J Environ Radioact 42:65–75

    Article  CAS  Google Scholar 

  42. Olszewska-Wasiolek M (1995) Estimates of the occupational radiological hazard in the phosphate fertilizers industry in Poland. Radiat Prot Dosimetry 58:269–276

    CAS  Google Scholar 

  43. Makweba MM, Holm E (1993) The natural radioactivity of the rock phosphates, phosphatic products and their environmental implications. Sci Total Environ 133:99–110

    Article  CAS  Google Scholar 

  44. Guimond RJ, Hardin JM (1989) Radioactivity released from phosphate containing fertilizers and from gypsum. Int J Rad Appl Instrum Part C Rad Phys Chem. 34:309–315

    CAS  Google Scholar 

  45. Alharbi W (2013) Natural radioactivity and dose assessment for brands of chemical and organic fertilizers used in Saudi Arabia. J Modern Phys 4:344–348

    Article  CAS  Google Scholar 

  46. Chauhan P, Chauhan R, Gupta M (2013) Estimation of naturally occurring radionuclides in fertilizers using gamma spectrometry and elemental analysis by XRF and XRD techniques. Microchem J 106:73–78

    Article  CAS  Google Scholar 

  47. Jibiri N, Fasae K (2012) Activity concentrations of 226Ra, 232Th and 40K in brands of fertilisers used in Nigeria. Radiat Prot Dosimetry 148:132–137

    Article  CAS  PubMed  Google Scholar 

  48. Righi S, Lucialli P, Bruzzi L (2005) Health and environmental impacts of a fertilizer plant–part i: assessment of radioactive pollution. J Environ Radioact 82:167–182

    Article  CAS  PubMed  Google Scholar 

  49. Khan K, Khan H, Tufail M, Khatibeh A, Ahmad N (1998) Radiometric analysis of hazard phosphate rock and fertilizers in Pakistan. J Environ Radioact 38:77–84

    Article  CAS  Google Scholar 

  50. Hussein E (1994) Radioactivity of phosphate ore, superphosphate, and phosphogypsum in abu-zaabal phosphate plant. Egypt Health Phys. 67:280–282

    Article  CAS  PubMed  Google Scholar 

  51. Guimond R (1990) Radium in fertilizers. International Atomic Energy Agency (IAEA), Technical Report, Vienna, pp 113–128

    Google Scholar 

  52. Mustonen R (1985) Radioactivity of fertilizers in Finland. Sci Total Environ 45:127–134

    Article  CAS  Google Scholar 

  53. Pfister H, Philipp G, Pauly H (1976) Population dose from natural radionuclides in phosphate fertilizers. Radiat Environ Biophys 13:247–261

    Article  CAS  PubMed  Google Scholar 

  54. Barillon R, Ozgumus A, Chambaudet A (2005) Direct recoil radon emanation from crystalline phases. Influence of moisture content. Geochim Cosmochim Acta 69:2735–2744

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Belafrites.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djabou, R.E., Mavon, C., Belafrites, A. et al. Mining treatment effects on natural radioactivity and radiological hazard index assessment in phosphates and fertilizers used in Algeria. J Radioanal Nucl Chem 331, 2081–2092 (2022). https://doi.org/10.1007/s10967-022-08258-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08258-5

Keywords

Navigation