Skip to main content
Log in

Radiological Hazards Assessment of Stream sediments at Wadi Diit and Wadi Sermatai area, Southern Eastern Desert, Egypt

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The present work used the γ-ray spectrometric data to evaluate the radioactive environmental assessment in Wadi Diit and Wadi Sermatai area. The sediments in the studies area consider important materials inreched with economic minerals such as ilmenite, magnetite, zircon, sphene, apatite, garnet, and rutile are applied in many important industrial applications. Thus, the high emitted radiation from the sediments will serve an adverse health effect. Therefore, the assessment of the radiological hazard indices are very important. In Diit area, the mean concentrations of 238U, 232Th, and 40K are 29.25 ± 14.79, 17.92 ± 10.61 and 347.63 Bq kg− 1, respectively, which is lower than the worldwide average value. At the same time, in Sermati area, the mean of activity concentration 238U (37.46 ± 12.79 Bq kg− 1) and 40K (798.15 ± 277.12 Bq kg− 1) is exceeded the worldwide value, and 232Th was not exceeded (22.88 ± 8.86 Bq kg− 1). The obtained radiological hazards parameters depicted that public exposure to emitted gamma radiation cannot induce various dangerous health effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data available on reasonable request from the authors.

References

  1. Hanfi MY (2019) Radiological assessment of gamma and radon dose rates at former uranium mining tunnels in Egypt. Environ Earth Sci 0:0. https://doi.org/10.1007/s12665-019-8089-3

    Article  CAS  Google Scholar 

  2. UNSCEAR (2010) Sources And Effects Of ionizing Radiation - Exposures of The Public And Workers From Various Sources Of Radiation - UNSCEAR 2008 Report

  3. Yuness M, Mohamed A, Abd El-Hady M et al (2015) Indoor Activity of Short-Lived Radon Progeny as Critical Parameter in Dose Assessment. Solid State Phenom 238:151–160. https://doi.org/10.4028/www.scientific.net/SSP.238.151

    Article  Google Scholar 

  4. Gulan L, Milenkovic B, Zeremski T, Milic G (2017) Chemosphere Persistent organic pollutants, heavy metals and radioactivity in the urban soil of Pri stina City, Kosovo and Metohija. Chemosphere 171:415–426. https://doi.org/10.1016/j.chemosphere.2016.12.064

    Article  CAS  PubMed  Google Scholar 

  5. Yuness M, Mohamed A, AbdEl-hady M et al (2015) Effect of indoor activity size distribution of222Rn progeny in-depth dose estimation. Appl Radiat Isot 97:34–39. https://doi.org/10.1016/j.apradiso.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  6. Abdel-Razek YA, Masoud MS, Hanafi MY, El-Nagdy MS (2015) Study of the parameters affecting radon gas flux from the stream sediments at Seila area Southeastern desert, Egypt. Environ Earth Sci 73:8035–8044. https://doi.org/10.1007/s12665-014-3958-2

    Article  CAS  Google Scholar 

  7. ATSDR (1999) Toxicological profile for uranium.Public Heal Serv US Dep Heal Hum Serv1–145

  8. ATSDR (2012) Draft toxicological profile for radon: agency for toxic substances and disease registry. 9–11,161–167

  9. ATSDR (1992) Case studies in environmental medicine.Public Heal Serv US Dep Heal Hum Serv1–28

  10. Hilal MA, Attallah MF, Mohamed GY, Fayez-hassan M (2014) Evaluation of radiation hazard potential of TENORM waste from oil and natural gas production. J Environ Radioact 136:121–126. https://doi.org/10.1016/j.jenvrad.2014.05.016

    Article  CAS  PubMed  Google Scholar 

  11. Ajayi OS (2009) Measurement of activity concentrations of 40K, 226Ra and 232Th for assessment of radiation hazards from soils of the southwestern region of Nigeria. Radiat Environ Biophys 48:323–332. https://doi.org/10.1007/s00411-009-0225-0

    Article  CAS  PubMed  Google Scholar 

  12. UNSCEAR (2000) Sources and effects of ionizing radiation: United Nations Scientific Committee on the Effects of Atomic Radiation. UNSCEAR 2000 Rep to Gen Assem 1–10

  13. Ambrosino F, Thinová L, Hýža M, Sabbarese C (2020) 214Bi/214Pb radioactivity ratio three-year monitoring in rainwater in Prague. Nukleonika 65:115–119. https://doi.org/10.2478/nuka-2020-0018

    Article  CAS  Google Scholar 

  14. Fawzy MM, Abu El Ghar MS, Gaafar IM, El Shafey AM, Diab M, Hussein AW (2022) Diit Quaternary Stream Sediments, Southern Coast of the Red Sea, Egypt: Potential Source of Ilmenite, Magnetite, Zircon, and Other Economic Heavy Minerals. Mining, Metallurgy & Exploration. https://doi.org/10.1007/s42461-022-00543-x

  15. Guo X, Yan J, Wang Q (2020) Monitoring of gamma radiation in aseismic region and its response to seismic events. J Environ Radioact 213:106119. https://doi.org/10.1016/j.jenvrad.2019.106119

    Article  CAS  PubMed  Google Scholar 

  16. IAEA IAEA (2004) Workplace monitoring for radiation and contamination. Vienna

  17. IAEA (1987) Preparation and certification of IAEA gamma-ray spectrometry reference materials RGU-1, RGTh-1 and RGK-1. Iaea-Rl-148 48

  18. Sabbarese C, Ambrosino F, Onofrio AD, Roca V (2020) Radiological characterization of natural building materials from the Campania region (Southern Italy). Constr Build Mater, 268, 121087. https://doi.org/10.1016/j.conbuildmat.2020.121087

  19. Ambrosino F, Thinová L, Briestenský M, Sabbarese C (2021) Study of 222Rn continuous monitoring time series and dose assessment in six European caves. Radiat Prot Dosimetry 191:233–237. https://doi.org/10.1093/rpd/ncaa159

    Article  CAS  Google Scholar 

  20. Örgün Y, Altinsoy N, Şahin SY et al (2007) Natural and anthropogenic radionuclides in rocks and beach sands from Ezine region (Çanakkale), Western Anatolia, Turkey. Appl Radiat Isot 65:739–747. https://doi.org/10.1016/j.apradiso.2006.06.011

    Article  CAS  PubMed  Google Scholar 

  21. Hanfi MYM, Masoud MS, Sayyed MI et al (2021) The presence of radioactive heavy minerals in prospecting trenches and concomitant occupational exposure. PLoS ONE 16:1–12. https://doi.org/10.1371/journal.pone.0249329

    Article  CAS  Google Scholar 

  22. Tabar E, İçhedef M, Kuş A et al (2017) Natural radioactivity levels and related risk assessment in soil samples from Sakarya, Turkey. J Radioanal Nucl Chem 313:249–259. https://doi.org/10.1007/s10967-017-5266-2

    Article  CAS  Google Scholar 

  23. Veiga R, Sanches N, Anjos RM et al (2006) Measurement of natural radioactivity in Brazilian beach sands. Radiat Meas 41:189–196. https://doi.org/10.1016/j.radmeas.2005.05.001

    Article  CAS  Google Scholar 

  24. Righi S, Bruzzi L (2006) Natural radioactivity and radon exhalation in building materials used in Italian dwellings. J Environ Radioact 88:158–170. https://doi.org/10.1016/j.jenvrad.2006.01.009

    Article  CAS  PubMed  Google Scholar 

  25. Ravisankar R, Chandramohan J, Chandrasekaran A et al (2015) Assessments of radioactivity concentration of natural radionuclides and radiological hazard indices in sediment samples from the East coast of Tamilnadu, India with statistical approach. Mar Pollut Bull. 97, 419-430. https://doi.org/10.1016/j.marpolbul.2015.05.058

  26. Ravisankar R, Sivakumar S, Chandrasekaran A et al (2014) Spatial distribution of gamma radioactivity levels and radiological hazard indices in the East Coastal sediments of Tamilnadu, India with statistical approach. Radiat Phys Chem 103:89–98. https://doi.org/10.1016/j.radphyschem.2014.05.037

    Article  CAS  Google Scholar 

  27. Ravisankar R, Vanasundari K, Chandrasekaran A et al (2012) Measurement of natural radioactivity in building materials of Namakkal, Tamil Nadu, India using gamma-ray spectrometry. Appl Radiat Isot 70:699–704. https://doi.org/10.1016/j.apradiso.2011.12.001

    Article  CAS  PubMed  Google Scholar 

  28. Gaafar I, Hanfi M, El-Ahll LS, Zeidan I (2021) Assessment of radiation hazards from phosphate rocks, Sibaiya area, central eastern desert, Egypt. Appl Radiat Isot 173:109734. https://doi.org/10.1016/j.apradiso.2021.109734

    Article  CAS  PubMed  Google Scholar 

  29. Asaduzzaman K, Khandaker MU, Amin YM, Bradley DA (2016) Natural radioactivity levels and radiological assessment of decorative building materials in Bangladesh. Indoor Built Environ 25:541–550. https://doi.org/10.1177/1420326X14562048

    Article  CAS  Google Scholar 

  30. Hasan M, Hossain Chaity A, Haydar A et al (2021) Elevated concentrations of terrestrial radionuclides in sand: An essential raw material used in Bangladeshi dwellings. Indoor Built Environ 30:1051–1061. https://doi.org/10.1177/1420326X20924835

    Article  CAS  Google Scholar 

  31. Kalaitzis A, Stoulos S, Melfos V et al (2019) Application of zeolitic rocks in the environment: assessment of radiation due to natural radioactivity. J Radioanal Nucl Chem 319:975–985. https://doi.org/10.1007/s10967-019-06427-7

    Article  CAS  Google Scholar 

  32. Arafa W (2004) Specific activity and hazards of granite samples collected from the Eastern Desert of Egypt. J Environ Radioact 75:315–327. https://doi.org/10.1016/j.jenvrad.2004.01.004

    Article  CAS  PubMed  Google Scholar 

  33. Hanfi MY, Masoud MS, Ambrosino F, Mostafa MYA (2021) Natural radiological characterization at the Gabal El Seila region (Egypt). Appl Radiat Isot 173,109705 https://doi.org/10.1016/j.apradiso.2021.109705

  34. USEPA (2011) EPA Radiogenic Cancer Risk Models and Projections for the U. S. Population

  35. Qureshi AA, Tariq S, Kamal U et al (2014) ScienceDirect Evaluation of excessive lifetime cancer risk due to natural radioactivity in the rivers sediments of Northern Pakistan. J Radiat Res Appl Sci 7:438–447. https://doi.org/10.1016/j.jrras.2014.07.008

    Article  Google Scholar 

  36. Baba-ahmed L, Benamar MEA, Belamri M, Azbouche A (2018) Natural radioactivity levels in sediments in Algiers Bay using instrumental neutron activation analysis. Radiochim Acta 106:939–948

    Article  CAS  Google Scholar 

  37. Darwish DAE, Abul-Nasr KTM, El-Khayatt AM (2015) The assessment of natural radioactivity and its associated radiological hazards and dose parameters in granite samples from South Sinai, Egypt. J Radiat Res Appl Sci 8:17–25. https://doi.org/10.1016/j.jrras.2014.10.003

    Article  CAS  Google Scholar 

  38. Abdel-Razek YA, Masoud MS, Hanfi MY, El-Nagdy MS (2016) Effective radiation doses from natural sources at Seila area South Eastern Desert, Egypt. J Taibah Univ Sci 10:271–280. https://doi.org/10.1016/j.jtusci.2015.06.010

    Article  Google Scholar 

  39. Malain D, Regan PH, Bradley DA et al (2012) An evaluation of the natural radioactivity in Andaman beach sand samples of Thailand after the 2004 tsunami. Appl Radiat Isot 70:1467–1474. https://doi.org/10.1016/j.apradiso.2012.04.017

    Article  CAS  PubMed  Google Scholar 

  40. Amin RM (2012) Gamma radiation measurements of naturally occurring radioactive samples from commercial Egyptian granites. Environ Earth Sci 67:771–775. https://doi.org/10.1007/s12665-012-1538-x

    Article  CAS  Google Scholar 

  41. Akpanowo MA, Umaru I, Iyakwari S et al (2020) Determination of natural radioactivity levels and radiological hazards in environmental samples from artisanal mining sites of Anka, North-West Nigeria. Sci Afr 10:e00561. https://doi.org/10.1016/j.sciaf.2020.e00561

    Article  Google Scholar 

  42. AlZahrani JH, Alharbi WR, Abbady AGE (2011) Radiological impacts of natural radioactivity and heat generation by radioactive decay of phosphorite deposits from Northwestern Saudi Arabia. Aust J Basic Appl 5:683–690

    CAS  Google Scholar 

  43. Al-Trabulsy HA, Khater AEM, Habbani FI (2011) Radioactivity levels and radiological hazard indices at the Saudi coastline of the Gulf of Aqaba. Radiat Phys Chem 80:343–348. https://doi.org/10.1016/j.radphyschem.2010.09.002

    Article  CAS  Google Scholar 

  44. Thabayneh KM (2013) Measurement of natural radioactivity and radon exhalation rate in granite samples used in palestinian buildings. Arab J Sci Eng 38:201–207. https://doi.org/10.1007/s13369-012-0391-2

    Article  CAS  Google Scholar 

  45. Sharaf JM, Hamideen MS (2013) Measurement of natural radioactivity in Jordanian building materials and their contribution to the public indoor gamma dose rate. Appl Radiat Isot 80:61–66. https://doi.org/10.1016/j.apradiso.2013.06.016

    Article  CAS  PubMed  Google Scholar 

  46. Zare MR, Mostajaboddavati M, Kamali M et al (2012) 235U, 238U, 232Th, 40K and 137Cs activity concentrations in marine sediments along the northern coast of Oman Sea using high-resolution gamma-ray spectrometry. Mar Pollut Bull 64:1956–1961. https://doi.org/10.1016/j.marpolbul.2012.05.005

    Article  CAS  PubMed  Google Scholar 

  47. Abbasi A (2013) Calculation of gamma radiation dose rate and radon concentration due to granites used as building materials in Iran. Radiat Prot Dosimetry 155:335–342. https://doi.org/10.1093/rpd/nct003

    Article  CAS  PubMed  Google Scholar 

  48. Almayahi BA, Tajuddin AA, Jaafar MS (2012) Effect of the natural radioactivity concentrations and 226Ra/ 238U disequilibrium on cancer diseases in Penang, Malaysia. Radiat Phys Chem 81:1547–1558. https://doi.org/10.1016/j.radphyschem.2012.03.018

    Article  CAS  Google Scholar 

  49. Senthilkumar G, Raghu Y, Sivakumar S et al (2014) Natural radioactivity measurement and evaluation of radiological hazards in some commercial flooring materials used in Thiruvannamalai, Tamilnadu, India. J Radiat Res Appl Sci 7:116–122. https://doi.org/10.1016/j.jrras.2013.12.009

    Article  CAS  Google Scholar 

  50. Yang YX, Wu XM, Jiang ZY et al (2005) Radioactivity concentrations in soils of the Xiazhuang granite area, China. Appl Radiat Isot 63:255–259. https://doi.org/10.1016/j.apradiso.2005.02.011

    Article  CAS  PubMed  Google Scholar 

  51. Guillén J, Tejado JJ, Baeza A et al (2014) Assessment of radiological hazard of commercial granites from Extremadura (Spain). J Environ Radioact 132:81–88. https://doi.org/10.1016/j.jenvrad.2014.02.004

    Article  CAS  PubMed  Google Scholar 

  52. Papadopoulos A, Christofides G, Koroneos A et al (2013) Natural radioactivity and radiation index of the major plutonic bodies in Greece. J Environ Radioact 124:227–238. https://doi.org/10.1016/j.jenvrad.2013.06.002

    Article  CAS  PubMed  Google Scholar 

  53. Aykamiş A, Turhan şeref, Aysun Ugur F et al (2013) Natural radioactivity, radon exhalation rates and indoor radon concentration of some granite samples usedas construction material in Turkey. Radiat Prot Dosimetry 157:105–111. https://doi.org/10.1093/rpd/nct110

    Article  CAS  PubMed  Google Scholar 

  54. Nada Farhan, Kadhim Ali A., Ridha Manar Dheyaa, Salim M.Y., Hanfi Mostafa Y.A., Mostafa (2021) Development of alpha tracks measurement with thermal oven as an etching technique for SSNTDs. Materials Today: Proceedings 442903-2908 10.1016/j.matpr.2020.12.232

    Article  CAS  Google Scholar 

  55. Mohamed Y., Hanfi Ilia V., Yarmoshenko Andrian A., Seleznev Georgy, Malinovsky Ekaterina, Ilgasheva Michael V., Zhukovsky (2020) Beta radioactivity of urban surface–deposited sediment in three Russian cities. Environmental Science and Pollution Research 27(32) 40309-40315 10.1007/s11356-020-10084-9

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Ibrahim Gaafar, Mona Fawzy and Mohamed Diab designed the research, performed the research, analyzed the data, and wrote the paper. Mohamed Hanfi developed the idea for the study.

Corresponding author

Correspondence to Mohamed Hanfi.

Ethics declarations

Declarations Ethics approval

Not applicable. The study has no data collected from human subjects.

Consent to participate

All authors have agreed to participate in this study.

Consent for publication:

All authors have approved and agreed to publish the paper in Journal of Radioanalytical and Nuclear Chemistry.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaafar, I., Fawzy, M., Diab, M. et al. Radiological Hazards Assessment of Stream sediments at Wadi Diit and Wadi Sermatai area, Southern Eastern Desert, Egypt. J Radioanal Nucl Chem 331, 1795–1806 (2022). https://doi.org/10.1007/s10967-022-08247-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08247-8

Keywords

Navigation