Skip to main content
Log in

Oxidative leaching of sandstone uranium ore assisted by ozone micro-nano bubbles

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The oxidation efficiency and leaching rate of ozone micro-nano bubbles (OMNBs) on UO2 and sandstone uranium ore were explored and evaluated through a batch oxidation experiment of sandstone uranium ore and a continuous flow oxidation experiment of UO2. OMNBs can accelerate the rate of oxidative leaching. Oxidation mainly relies on ozone oxidation. Oxidation of sandstone uranium ore by OMNBs was feasible, and OMNBs may solve current problems encountered in production practice. The continuous flow experiment verified the feasibility of the large-scale experiment and provided a new method for CO2 + O2 ISL of uranium under normal pressure in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Falk J, Green J, Mudd G (2006) Australia, uranium and nuclear power. Int J Environ Stud 63(6):845–857. https://doi.org/10.1080/00207230601047131

    Article  CAS  Google Scholar 

  2. Tulsidas H, Fairclough M (2018) World distribution of uranium deposits (UDEPO)

  3. Filippov AP, Kanevskii EA (1965) Oxidation-reduction potentials and the degree of uranium leaching in sulphuric acid solutions. J Nucl Energy Parts A 19(7):575–580. https://doi.org/10.1016/0368-3230(65)90137-0

    Article  Google Scholar 

  4. Mudd G (2001) Critical review of acid in situ leach uranium mining: 1 USA and Australia. Environ Geology 41(3–4):390–403. https://doi.org/10.1007/s002540100406

    Article  CAS  Google Scholar 

  5. Mudd G (2001) Critical review of acid in situ leach uranium mining: 2. Soviet Block and Asia. Environ Geol 41(3–4):404–416. https://doi.org/10.1007/s002540100405

    Article  CAS  Google Scholar 

  6. Ilankoon IMSK, Tang Y, Ghorbani Y, Northey S, Yellishetty M, Deng X, Mcbride D (2018) The current state and future directions of percolation leaching in the Chinese mining industry: challenges and opportunities. Miner Eng 125:206–222. https://doi.org/10.1016/j.mineng.2018.06.006

    Article  CAS  Google Scholar 

  7. Xu D, Chi G, Nie F, Fayek M, Hu R (2021) Diversity of uranium deposits in China—an introduction to the special issue. Ore Geol Rev 129:103944. https://doi.org/10.1016/j.oregeorev.2020.103944

    Article  Google Scholar 

  8. Alam MS, Cheng T (2014) Uranium release from sediment to groundwater: influence of water chemistry and insights into release mechanisms. J Contam Hydrol 164:72–87. https://doi.org/10.1016/j.jconhyd.2014.06.001

    Article  CAS  PubMed  Google Scholar 

  9. Bhargava SK, Ram R, Pownceby M, Grocott S, Ring B, Tardio J, Jones L (2015) A review of acid leaching of uraninite. Hydrometallurgy 151:10–24. https://doi.org/10.1016/j.hydromet.2014.10.015

    Article  CAS  Google Scholar 

  10. Zhi M, Chang X, Que W, Niu Y, Wen Z, Wang H (2020) Experimental study on the application of Eluex process in acid ISL. J Radioanal Nucl Chem 325(2):551–556. https://doi.org/10.1007/s10967-020-07268-5

    Article  CAS  Google Scholar 

  11. Robin V, Beaufort D, Tertre E, Reinholdt M, Fromaget M, Forestier S, de Boissezon H, Descostes M (2020) Fate of dioctahedral smectites in uranium roll front deposits exploited by acidic In Situ Recovery (ISR) solutions. Appl Clay Sci 187:105484. https://doi.org/10.1016/j.clay.2020.105484

    Article  CAS  Google Scholar 

  12. Chung D-Y, Seo H-S, Lee J-W, Yang H-B, Lee E-H, Kim K-W (2010) Oxidative leaching of uranium from SIMFUEL using Na2CO3-H2O2 solution. J Radioanal Nucl Chem 284(1):123–129. https://doi.org/10.1007/s10967-009-0443-6

    Article  CAS  Google Scholar 

  13. Kacham AR, Suri AK (2014) Application of a topochemical reaction model to predict leaching behavior of high carbonate uranium ores in alkaline solutions: an experimental case study. Hydrometallurgy 141:67–75. https://doi.org/10.1016/j.hydromet.2013.10.005

    Article  CAS  Google Scholar 

  14. Asghar F, Sun Z, Chen G, Zhou Y, Li G, Liu H, Zhao K (2020) Geochemical characteristics and uranium neutral leaching through a CO2+O2 system—an example from uranium ore of the ELZPA ore deposit in Pakistan. Metals. https://doi.org/10.3390/met10121616

    Article  Google Scholar 

  15. Asghar FZY, Sun ZX, Li GR, Xu LL, Zhao K (2021) CO2+O2 neutral leaching experiment of uranium ore from Mengqiguer deposit in Xinjiang. Nonferrous Metals Extra Metall 08:46–55. https://doi.org/10.3969/j.issn.1007-7545.2021.08.006 ((inChinese))

    Article  Google Scholar 

  16. Xu LY, H.; Zhou Y, Li G (2020) Neutral leaching of uranium ore from a sandstone-type deposit. Nonferrous Metals Extra Metall 3:38–44. https://doi.org/10.3969/j.issn.1007-7545.2020.03.008(in Chinese)

  17. Agarwal A, Ng WJ, Yu L (2011) Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere 84(9):1175–1180. https://doi.org/10.1016/j.chemosphere.2011.05.054

    Article  CAS  PubMed  Google Scholar 

  18. Azevedo A, Oliveira H, Rubio J (2019) Bulk nanobubbles in the mineral and environmental areas: updating research and applications. Adv Colloid Interface Sci 271:101992. https://doi.org/10.1016/j.cis.2019.101992

    Article  CAS  PubMed  Google Scholar 

  19. Meegoda JN, Aluthgun Hewage S, Batagoda JH (2018) Stability of Nanobubbles. Environ Eng Sci 35(11):1216–1227. https://doi.org/10.1089/ees.2018.0203

    Article  CAS  Google Scholar 

  20. Ghadimkhani A, Zhang W, Marhaba T (2016) Ceramic membrane defouling (cleaning) by air Nano Bubbles. Chemosphere 146:379–384. https://doi.org/10.1016/j.chemosphere.2015.12.023

    Article  CAS  PubMed  Google Scholar 

  21. Minamikawa K, Takahashi M, Makino T, Tago K, Hayatsu M (2015) Irrigation with oxygen-nanobubble water can reduce methane emission and arsenic dissolution in a flooded rice paddy. Environ Res Lett 10(8):084012. https://doi.org/10.1088/1748-9326/10/8/084012

    Article  CAS  Google Scholar 

  22. Hu L, Xia Z (2017) Application of ozone micro-nano-bubbles to groundwater remediation. J Hazard Mater 342:446–453

    Article  PubMed  Google Scholar 

  23. Yamabe H, Nakaoka K, Xue Z, Matsuoka T, Kameyama H, Nishio S (2013) Simulation study of CO2 micro-bubble generation through porous media. Energy Procedia 37:4635–4646. https://doi.org/10.1016/j.egypro.2013.06.372

    Article  CAS  Google Scholar 

  24. Kim Y, Oh J-I, Zhang M, Lee J, Park Y-K, Ho Lee K, Kwon EE (2019) Reduction of Na and K contents in bio-heavy oil using micro-/nano-sized CO2 bubbles. Journal of CO2 Utilization 34:430–436. doi:https://doi.org/10.1016/j.jcou.2019.07.031

  25. Liu S, Oshita S, Thuyet DQ, Saito M, Yoshimoto T (2018) Antioxidant Activity of Hydrogen Nanobubbles in Water with Different Reactive Oxygen Species both in Vivo and in Vitro. Langmuir 34(39):11878–11885. https://doi.org/10.1021/acs.langmuir.8b02440

    Article  CAS  PubMed  Google Scholar 

  26. Xiao Z, Li D, Wang F, Sun Z, Lin Z (2020) Simultaneous removal of NO and SO2 with a new recycling micro-nano bubble oxidation-absorption process based on HA-Na. Sep Purif Technol 242:116788. https://doi.org/10.1016/j.seppur.2020.116788

    Article  CAS  Google Scholar 

  27. Xiao Z, Li D, Zhu Q, Sun Z (2020) Simultaneous removal of NO and SO2 through a new wet recycling oxidation-reduction process utilizing micro-nano bubble gas-liquid dispersion system based on Na2SO3. Fuel 263:116882. https://doi.org/10.1016/j.fuel.2019.116682

    Article  CAS  Google Scholar 

  28. Xiao Z, Li D, Zhang R, Wang F, Pan F, Sun Z (2020) An experimental study on the simultaneous removal of NO and SO2 with a new wet recycling process based on the micro-nano bubble water system. Environ Sci Pollut Res Int 27(4):4197–4205. https://doi.org/10.1007/s11356-019-07136-0

    Article  CAS  PubMed  Google Scholar 

  29. Xiao Z, Li D (2020) Simultaneous removal of NO and SO2 with a micro-bubble gas-liquid dispersion system based on air/H2O2/Na2S2O8. Environ Technol 41(27):3573–3583. https://doi.org/10.1080/09593330.2019.1615134

    Article  CAS  PubMed  Google Scholar 

  30. Li P, Wu C, Yang Y, Wang Y, Yu S, Xia S, Chu W (2018) Effects of microbubble ozonation on the formation of disinfection by-products in bromide-containing water from Tai Lake. Sep Purif Technol 193:408–414. https://doi.org/10.1016/j.seppur.2017.11.049

    Article  CAS  Google Scholar 

  31. Khuntia S, Majumder SK, Ghosh P (2013) Removal of ammonia from water by ozone microbubbles. Ind Eng Chem Res 52(1):318–326. https://doi.org/10.1021/ie302212p

    Article  CAS  Google Scholar 

  32. Ryskie S, Gonzalez-Merchan C, Neculita CM, Genty T (2020) Efficiency of ozone microbubbles for ammonia removal from mine effluents. Miner Eng 145:106071. https://doi.org/10.1016/j.mineng.2019.106071

    Article  CAS  Google Scholar 

  33. Yang Z, Li Y, Ning Y, Yang S, Tang Y, Zhang Y, Wang X (2018) Effects of oxidant and particle size on uranium leaching from coal ash. J Radioanal Nucl Chem 317(2):801–810. https://doi.org/10.1007/s10967-018-5963-5

    Article  CAS  Google Scholar 

  34. Pedroza FRC, Aguilar MDJS, Treviño TP, Luévanos AM, Castillo MS (2012) Treatment of sulfide minerals by oxidative leaching with ozone. Miner Process Extr Metall Rev 33(4):269–279. https://doi.org/10.1080/08827508.2011.584093

    Article  CAS  Google Scholar 

  35. Ukasik M, Havlik T (2004) Effect of selected parameters on tetrahedrite leaching by ozone. Hydrometallurgy 77(1):139–145. https://doi.org/10.1016/j.hydromet.2004.10.017

    Article  CAS  Google Scholar 

  36. Li Q, Li D, Qian F (2009) Pre-oxidation of high-sulfur and high-arsenic refractory gold concentrate by ozone and ferric ions in acidic media. Hydrometallurgy 97(1):61–66. https://doi.org/10.1016/j.hydromet.2009.01.002

    Article  CAS  Google Scholar 

  37. Tian Q, Wang H, Xin Y, Li D, Guo X (2016) Ozonation leaching of a complex sulfidic antimony ore in hydrochloric acid solution. Hydrometallurgy 159:126–131. https://doi.org/10.1016/j.hydromet.2015.11.011

    Article  CAS  Google Scholar 

  38. Fan W, An WG, Huo MX, Yang W, Zhu SY, Lin SS (2020) Solubilization and stabilization for prolonged reactivity of ozone using micro-nano bubbles and ozone-saturated solvent: a promising enhancement for ozonation. Sep Purif Technol 238:116484. https://doi.org/10.1016/j.seppur.2019.116484

    Article  CAS  Google Scholar 

  39. Tocino F, Szenknect S, Mesbah A, Clavier N, Dacheux N (2014) Dissolution of uranium mixed oxides: the role of oxygen vacancies vs. the redox reactions. Prog Nucl Energy 72:101–106. https://doi.org/10.1016/j.pnucene.2013.09.014

    Article  CAS  Google Scholar 

  40. Wang D, Yang X, Tian C, Lei Z, Kobayashi N, Kobayashi M, Adachi Y, Shimizu K, Zhang Z (2018) Characteristics of ultra-fine bubble water and its trials on enhanced methane production from waste activated sludge. Biores Technol 273:63–69. https://doi.org/10.1016/j.biortech.2018.10.077

    Article  CAS  Google Scholar 

  41. Liu JH, Shi WJ, Liu YJ, Zhou YP, Sun ZX (2015) Comparative experiments on acid leaching and bioleaching to a sandstone type uranium ore. Adv Mater Res 1130:247–250. https://doi.org/10.4028/www.scientific.net/AMR.1130.247

    Article  Google Scholar 

  42. Umanskii AB, Klyushnikov AM (2013) Bioleaching of low grade uranium ore containing pyrite using A. ferrooxidans and A. thiooxidans. J Radioanal Nucl Chem 295(1):151–156. https://doi.org/10.1007/s10967-012-1816-9

    Article  CAS  Google Scholar 

  43. Tan K, Li C, Liu J, Qu H, Xia L, Hu Y, Li Y (2014) A novel method using a complex surfactant for in-situ leaching of low permeable sandstone uranium deposits. Hydrometallurgy 150:99–106. https://doi.org/10.1016/j.hydromet.2014.10.001

    Article  CAS  Google Scholar 

  44. Du R, Zhang X, Li M, Wu X, Liu Y, Jiang T, Chen C, Peng Y (2019) Leaching of low permeable sandstone uranium ore using auxiliary materials: anionic surfactants. J Radioanal Nucl Chem 322(2):839–846. https://doi.org/10.1007/s10967-019-06793-2

    Article  CAS  Google Scholar 

  45. Ulatowski K, Sobieszuk P, Mróz A, Ciach T (2019) Stability of nanobubbles generated in water using porous membrane system. Chem Eng Process 136:62–71. https://doi.org/10.1016/j.cep.2018.12.010

    Article  CAS  Google Scholar 

  46. Zhou Z, Yang Z, Sun Z, Liu Y, Chen G, Liao Q, Xu L, Wang X, Li J, Zhou Y (2019) Enhanced uranium bioleaching high-fluorine and low-sulfur uranium ore by a mesophilic acidophilic bacterial consortium with pyrite. J Radioanal Nucl Chem 321(2):711–722. https://doi.org/10.1007/s10967-019-06608-4

    Article  CAS  Google Scholar 

  47. Rodríguez-Rodríguez C, Nava-Alonso F, Uribe-Salas A (2014) Silver leaching from pyrargyrite oxidation by ozone in acid media. Hydrometallurgy 149:168–176. https://doi.org/10.1016/j.hydromet.2014.08.006

    Article  CAS  Google Scholar 

  48. Nicol MJ, Needes CRS (1975) The anodic dissolution of uranium dioxide-I. in perchlorate solutions. Electrochimica Acta 20(8):585–589. https://doi.org/10.1016/0013-4686(75)80009-0

    Article  CAS  Google Scholar 

  49. Ram R, Charalambous FA, McMaster S, Pownceby MI, Tardio J, Bhargava SK (2013) An investigation on the dissolution of natural uraninite ores. Miner Eng 50–51:83–92. https://doi.org/10.1016/j.mineng.2013.06.013

    Article  CAS  Google Scholar 

  50. Li M, Huang C, Zhang X, Gao F, Wu X, Fang Q, Tan W, Zhang D (2018) Extraction mechanism of depleted uranium exposure by dilute alkali pretreatment combined with acid leaching. Hydrometallurgy 180:201–209. https://doi.org/10.1016/j.hydromet.2018.07.021

    Article  CAS  Google Scholar 

  51. Khuntia S, Majumder SK, Ghosh P (2014) Oxidation of As(III) to As(V) using ozone microbubbles. Chemosphere 97:120–124. https://doi.org/10.1016/j.chemosphere.2013.10.046

    Article  CAS  PubMed  Google Scholar 

  52. Wang P, Hu E, Wang Q, Lei Z, Wang H, Zhang Y, Hou W, Zhang R (2019) Selective extraction of uranium from uranium–beryllium ore by acid leaching. J Radioanal Nucl Chem 322(2):597–604. https://doi.org/10.1007/s10967-019-06689-1

    Article  CAS  Google Scholar 

  53. Shen N, Li J, Guo Y, Li X (2020) Thermodynamic modeling of in situ leaching of sandstone-type uranium minerals. J Chem Eng Data 65(4):2017–2031. https://doi.org/10.1021/acs.jced.9b01152

    Article  CAS  Google Scholar 

  54. Pelalak R, Alizadeh R, Ghareshabani E, Heidari Z (2020) Degradation of sulfonamide antibiotics using ozone-based advanced oxidation process: experimental, modeling, transformation mechanism and DFT study. Sci Total Environ 734:139446. https://doi.org/10.1016/j.scitotenv.2020.139446

    Article  CAS  PubMed  Google Scholar 

  55. Anand Rao K, Sreenivas T, Vinjamur M, Suri AK (2014) Continuous leaching of uranium from an Indian ore: Residence time scale up and heat effects. Hydrometallurgy 146:119–127. https://doi.org/10.1016/j.hydromet.2014.03.014

    Article  CAS  Google Scholar 

  56. Sheng Y, Li X, Deng W, Jiang F, Xing H, Wang R (2014) Risk analysis of gas supply system in CO2+O2 in-situ leaching uranium mining project based on HAZOP. Uranium Min Metall 129(1):8–12. https://doi.org/10.13426/j.cnki.yky.2014.01.003 ((inChinese))

    Article  CAS  Google Scholar 

  57. Loh WH, Cai QQ, Li R, Jothinathan L, Hu JY (2021) Reverse osmosis concentrate treatment by microbubble ozonation-biological activated carbon process: organics removal performance and environmental impact assessment. Sci Total Environ 798:149289. https://doi.org/10.1016/j.scitotenv.2021.149289

    Article  CAS  PubMed  Google Scholar 

  58. Zhang R, Wang H, Hu E, Lei Z, Hu F, Hou W, Wang Q (2022) Oxidation of pyrite using ozone micro-nano bubbles. Min Metall Explor. https://doi.org/10.1007/s42461-021-00528-2

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (11675072), the Hunan Provincial Innovation Foundation for Postgraduate (CX20200906).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingliang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Hou, W., Wang, H. et al. Oxidative leaching of sandstone uranium ore assisted by ozone micro-nano bubbles. J Radioanal Nucl Chem 331, 1645–1658 (2022). https://doi.org/10.1007/s10967-022-08241-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08241-0

Keywords

Navigation