Skip to main content
Log in

Synthesis of amidoximated polyacrylonitrile/sodium alginate composite hydrogel beed and its use in selective and recyclable removal of U(VI)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, a novel type of composite hydrogel bead (PSH) was prepared by mixing of amidoximated polyacrylonitrile (PAO) and sodium alginate (SA). The structure of PSH was characterized with FT-IR, SEM and XPS. The influences of adsorption conditions on uranium(VI) adsorption by PSH were investigated by batch experiments. The kinetic and isotherm data were consistent with pseudo-second-order and Langmuir models, respectively. PSH displayed high selective adsorption capacity for uranium(VI). The maximum adsorption amount can reach 133.33 mg g−1. PSH was separated from aqueous solution easy and showed an excellent regeneration capacity. This research demonstrated that PSH had a broad prospect of application in the field of repairing uranium-containing wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Barnham K, Mazzer M, Clive B (2006) Resolving the energy crisis: nuclear or photovoltaics? Nat Mater. https://doi.org/10.1038/nmat1604

    Article  Google Scholar 

  2. Schiermeier Q, Tollefson J, Scully T et al (2008) Energy alternatives: electricity without carbon. Nature. https://doi.org/10.1038/454816a

    Article  PubMed  Google Scholar 

  3. Liu R, Wen S, Sun Y et al (2021) A nanoclay enhanced Amidoxime-Functionalized double-network hydrogel for fast and massive uranium recovery from seawater. Chem Eng J 2021:422. https://doi.org/10.1016/j.cej.2021.130060

    Article  CAS  Google Scholar 

  4. Li FF, Cui WR, Jiang W et al (2020) Stable sp(2) carbon-conjugated covalent organic framework for detection and efficient adsorption of uranium from radioactive wastewater. J Hazard Mater 392:122333. https://doi.org/10.1016/j.jhazmat.2020.122333

    Article  CAS  PubMed  Google Scholar 

  5. Cui WR, Zhang CR, Xu RH et al (2021) Rational design of covalent organic frameworks as a groundbreaking uranium capture platform through three synergistic mechanisms. Appl Catal B 2021:294. https://doi.org/10.1016/j.apcatb.2021.120250

    Article  CAS  Google Scholar 

  6. Broda E, Gładysz-Płaska A, Skwarek E et al (2021) Structural properties and adsorption of uranyl ions on the nanocomposite hydroxyapatite/white clay. Appl Nano. https://doi.org/10.1007/s13204-021-01790-y

    Article  Google Scholar 

  7. Pan N, Tang J, Hou D et al (2021) Enhanced uranium uptake from acidic media achieved on a novel iron phosphate adsorbent. Chem Eng J 2021:423. https://doi.org/10.1016/j.cej.2021.130267

    Article  CAS  Google Scholar 

  8. Wen Y, Yuan Y, Li L et al (2017) Ultrasensitive DNAzyme based amperometric determination of uranyl ion using mesoporous silica nanoparticles loaded with Methylene Blue. Mikrochim Acta 184(10):3909–3917. https://doi.org/10.1007/s00604-017-2397-7

    Article  CAS  Google Scholar 

  9. Li L, Lu W, Ding D et al (2019) Adsorption properties of pyrene-functionalized nano-Fe3O4 mesoporous materials for uranium. J Solid State Chem 270:666–673. https://doi.org/10.1016/j.jssc.2018.12.030

    Article  CAS  Google Scholar 

  10. Monier M, Elsayed NH (2014) Selective extraction of uranyl ions using ion-imprinted chelating microspheres. J Colloid Interface Sci 423:113–122. https://doi.org/10.1016/j.jcis.2014.02.015

    Article  CAS  PubMed  Google Scholar 

  11. Liu W, Zhao X, Wang T et al (2016) Adsorption of U(VI) by multilayer titanate nanotubes: effects of inorganic cations, carbonate and natural organic matter. Chem Eng J 286:427–435. https://doi.org/10.1016/j.cej.2015.10.094

    Article  CAS  Google Scholar 

  12. Gan Q, Xu M, Li Q et al (2021) Two-dimensional ion-imprinted silica for selective uranium extraction from low-level radioactive effluents. ACS Sustain Chem Eng 9(23):7973–7981. https://doi.org/10.1021/acssuschemeng.1c02248

    Article  CAS  Google Scholar 

  13. Liu C, Hsu PC, Xie J et al (2017) A half-wave rectified alternating current electrochemical method for uranium extraction from seawater. Nat Energy 2:4. https://doi.org/10.1038/nenergy.2017.7

    Article  CAS  Google Scholar 

  14. Zhang S, Li H, Wang S (2020) Construction of an ion pathway boosts uranium extraction from seawater. Chem 6(7):1504–1505. https://doi.org/10.1016/j.chempr.2020.06.023

    Article  CAS  Google Scholar 

  15. Amaral JCBS, Morais CA (2010) Thorium and uranium extraction from rare earth elements in monazite sulfuric acid liquor through solvent extraction. Miner Eng 23(6):498–503. https://doi.org/10.1016/j.mineng.2010.01.003

    Article  CAS  Google Scholar 

  16. Suresh P, Duval CE (2020) Poly(acid)-functionalized membranes to sequester uranium from seawater. Ind Eng Chem Res 59(26):12212–12222. https://doi.org/10.1021/acs.iecr.0c01090

    Article  CAS  Google Scholar 

  17. Amphlett JTM, Choi S, Parry SA et al (2020) Insights on uranium uptake mechanisms by ion exchange resins with chelating functionalities: chelation vs. anion exchange. Chem Eng J. https://doi.org/10.1016/j.cej.2019.123712

    Article  Google Scholar 

  18. He N, Li H, Cheng C et al (2020) Enhanced marine applicability of adsorbent for uranium via synergy of hyperbranched poly(amido amine) and amidoxime groups. Chem Eng J 2020:395. https://doi.org/10.1016/j.cej.2020.125162

    Article  CAS  Google Scholar 

  19. Wang S, Wang L, Li Z et al (2021) Highly efficient adsorption and immobilization of U(VI) from aqueous solution by alkalized MXene-supported nanoscale zero-valent iron. J Hazard Mater 408:124949. https://doi.org/10.1016/j.jhazmat.2020.124949

    Article  CAS  PubMed  Google Scholar 

  20. Zhao B, Yuan L, Wang Y et al (2021) Carboxylated UiO-66 tailored for U(VI) and Eu(III) trapping: from batch adsorption to dynamic column separation. ACS Appl Mater Int 13(14):16300–16308. https://doi.org/10.1021/acsami.1c00364

    Article  CAS  Google Scholar 

  21. Huang Z, Li Z, Zheng L et al (2017) Interaction mechanism of uranium(VI) with three-dimensional graphene oxide-chitosan composite: Insights from batch experiments, IR, XPS, and EXAFS spectroscopy. Chem Eng J. https://doi.org/10.1016/j.cej.2017.07.067

    Article  Google Scholar 

  22. Wang Z, Liu H, Lei Z et al (2020) Graphene aerogel for photocatalysis-assist uranium elimination under visible light and air atmosphere. Chem Eng J. https://doi.org/10.1016/j.cej.2020.126256

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang Z, Hu H, Huang L et al (2020) Graphene aerogel capsulated precipitants for high efficiency and rapid elimination of uranium from water. Chem Eng J. https://doi.org/10.1016/j.cej.2020.125272

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhu W, Li L, Dai L et al (2018) Bioassembly of fungal hyphae/carbon nanotubes composite as a versatile adsorbent for water pollution control. Chem Eng J 2018:339. https://doi.org/10.1016/j.cej.2018.01.134

    Article  CAS  Google Scholar 

  25. Asiabi H, Yamini Y, Shamsayei S (2018) Highly efficient capture and recovery of uranium by reusable layered double hydroxide intercalated with 2-mercaptoethanesulfonate. Chem Eng J. https://doi.org/10.1016/j.cej.2017.12.143

    Article  Google Scholar 

  26. Tachibana Y, Tanaka M, Nogami M (2019) Crown ether-type organic composite adsorbents embedded in high-porous silica beads for simultaneous recovery of lithium and uranium in seawater. J Radioanal Nucl Chem 322(2):717–730. https://doi.org/10.1007/s10967-019-06792-3

    Article  CAS  Google Scholar 

  27. Ma F, Gui Y, Liu P et al (2020) Functional fibrous materials-based adsorbents for uranium adsorption and environmental remediation. Chem Eng J 3:90. https://doi.org/10.1016/j.cej.2020.124597

    Article  CAS  Google Scholar 

  28. Li H, He N, Cheng C et al (2020) Antimicrobial polymer contained adsorbent: a promising candidate with remarkable anti-biofouling ability and durability for enhanced uranium extraction from seawater. Chem Eng J. https://doi.org/10.1016/j.cej.2020.124273

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang P, Wang L, Huang Z et al (2020) Aryl diazonium-assisted amidoximation of MXene for boosting water stability and uranyl sequestration via electrochemical sorption. ACS Appl Mater Interfaces 12(13):15579–15587. https://doi.org/10.1021/acsami.0c00861

    Article  CAS  PubMed  Google Scholar 

  30. Wang L, Yuan L, Chen K et al (2016) Loading actinides in multilayered structures for nuclear waste treatment: the first case study of uranium capture with vanadium carbide MXene. ACS Appl Mater Int 8(25):16396–16403. https://doi.org/10.1021/acsami.6b02989

    Article  CAS  Google Scholar 

  31. Yuan Y, Yang Y, Ma X et al (2018) Molecularly imprinted porous aromatic frameworks and their composite components for selective extraction of uranium ions. Adv Mater 30(12):e1706507. https://doi.org/10.1002/adma.201706507

    Article  CAS  PubMed  Google Scholar 

  32. Bai J, Ma X, Yan H et al (2020) A novel functional porous organic polymer for the removal of uranium from wastewater. Microporous Mesoporous Mater 306:110441. https://doi.org/10.1016/j.micromeso.2020.110441

    Article  CAS  Google Scholar 

  33. Sun Q, Aguila B, Earl LD et al (2018) Covalent organic frameworks as a decorating platform for utilization and affinity enhancement of chelating sites for radionuclide sequestration. Adv Mater 30(20):e1705479. https://doi.org/10.1002/adma.201705479

    Article  CAS  PubMed  Google Scholar 

  34. Yu B, Ye G, Chen J et al (2019) Membrane-supported 1D MOF hollow superstructure array prepared by polydopamine-regulated contra-diffusion synthesis for uranium entrapment. Environ Pollut 253:39–48. https://doi.org/10.1016/j.envpol.2019.06.114

    Article  CAS  PubMed  Google Scholar 

  35. Yu Q, Yuan Y, Feng L et al (2020) Spidroin-inspired, high-strength, loofah-shaped protein fiber for capturing uranium from seawater. Angew Chem Int Ed 59(37):15997–16001. https://doi.org/10.1002/anie.202007383

    Article  CAS  Google Scholar 

  36. Kou S, Yang Z, Sun F (2017) Protein hydrogel microbeads for selective uranium mining from seawater. ACS Appl Mater Int. https://doi.org/10.1021/acsami.6b15968

    Article  Google Scholar 

  37. Yuan Y, Yu Q, Wen J et al (2019) Ultrafast and highly selective uranium extraction from seawater by hydrogel-like spidroin-based protein fiber. Angew Chem Int Ed 58(34):11785–11790. https://doi.org/10.1002/anie.201906191

    Article  CAS  Google Scholar 

  38. Xiao F, Cheng Y, Zhou P et al (2021) Fabrication of novel carboxyl and amidoxime groups modified luffa fiber for highly efficient removal of uranium(VI) from uranium mine water. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2021.105681

    Article  Google Scholar 

  39. Lu W, Tang S, Li L et al (2019) Adsorption and recovery of amidoxime modified nano-Fe3O4-Aspergillus niger for U(VI) from low concentration uranium solution. Nanosci Nanotech Lett 11(3):337–345. https://doi.org/10.1166/nnl.2019.2896

    Article  Google Scholar 

  40. Li L, Hu N, Ding D et al (2015) Adsorption and recovery of U(vi) from low concentration uranium solution by amidoxime modified Aspergillus niger. RSC Adv 5(81):65827–65839. https://doi.org/10.1039/c5ra13516h

    Article  CAS  Google Scholar 

  41. Khamirchi R, Hosseini-Bandegharaei A, Alahabadi A et al (2018) Adsorption property of Br-PADAP-impregnated multiwall carbon nanotubes towards uranium and its performance in the selective separation and determination of uranium in different environmental samples. Ecotox Environ Safe 150:136–143. https://doi.org/10.1016/j.ecoenv.2017.12.039

    Article  CAS  Google Scholar 

  42. Zhang J, Zhang H, Liu Q et al (2019) Diaminomaleonitrile functionalized double-shelled hollow MIL-101 (Cr) for selective removal of uranium from simulated seawater. Chem Eng J 368:951–958. https://doi.org/10.1016/j.cej.2019.02.096

    Article  CAS  Google Scholar 

  43. Wang T, Xu M, Han X et al (2019) Petroleum pitch-based porous aromatic frameworks with phosphonate ligand for efficient separation of uranium from radioactive effluents. J Hazard Mater 368:214–220. https://doi.org/10.1016/j.jhazmat.2019.01.048

    Article  CAS  PubMed  Google Scholar 

  44. Gao Y, Yuan Y, Ma D et al (2014) Removal of aqueous uranyl ions by magnetic functionalized carboxymethylcellulose and adsorption property investigation. J Nucl Mater 453(1–3):82–90. https://doi.org/10.1016/j.jnucmat.2014.06.028

    Article  CAS  Google Scholar 

  45. Li L, Huang F, Yuan Y et al (2013) Preparation and sorption performance of magnetic 18-crown-6/Fe3O4 nanocomposite for uranium(VI) in solution. J Radioanal Nucl Ch 298(1):227–235. https://doi.org/10.1007/s10967-013-2443-9

    Article  CAS  Google Scholar 

  46. Li M, Liu H, Chen T et al (2019) Synthesis of magnetic biochar composites for enhanced uranium(VI) adsorption. Sci Total Environ 651(Pt 1):1020–1028. https://doi.org/10.1016/j.scitotenv.2018.09.259

    Article  CAS  PubMed  Google Scholar 

  47. Cui H, Pan N, Fan W et al (2019) Ultrafast fabrication of gradient nanoporous all-polysaccharide films as strong, superfast, and multiresponsive actuators. Asv Funct Mater. https://doi.org/10.1002/adfm.201807692

    Article  Google Scholar 

  48. Şenol ZM, Şimşek S, Özer A et al (2021) Application of kaolinite-based composite as an adsorbent for removal of uranyl ions from aqueous solution: kinetics and equilibrium study. J Radioanal Nucl Ch. https://doi.org/10.1007/s10967-021-08070-7

    Article  Google Scholar 

  49. Şenol ZM, Şimşek S, Özer A et al (2021) Synthesis and characterization of chitosan-vermiculite composite beads for removal of uranyl ions: isotherm, kinetics and thermody-namics studies. J Radioanal Nucl Ch 327:159–173. https://doi.org/10.1007/s10967-020-07481-2

    Article  CAS  Google Scholar 

  50. Şenol ZM (2021) A chitosan-based composite for adsorption of uranyl ions; mechanism, isothems, kinetics and thermodynamics. Int J Biol Macromol 183:1640–1648. https://doi.org/10.1016/j.ijbiomac.2021.05.130

    Article  CAS  PubMed  Google Scholar 

  51. Şenol ZM, Şimşek S, Mahmood A et al (2020) Insight from adsorption properties of Xylidyl Blue embedded hydrogel for effective removal of uranyl: experimental and theoretical approaches. Polym Test 88:106566. https://doi.org/10.1016/j.polymertesting.2020.106566

    Article  CAS  Google Scholar 

  52. Zou Z, Wang L, Zhou Z et al (2021) Simultaneous incorporation of PTH(1–34) and nano-hydroxyapatite into Chitosan/Alginate Hydrogels for efficient bone regeneration. Bioact Mater 6(6):1839–1851. https://doi.org/10.1016/j.bioactmat.2020.11.021

    Article  CAS  PubMed  Google Scholar 

  53. Hao D, Huang Q, Wei W et al (2021) A reusable, separation-free and biodegradable calcium alginate/g-C3N4 microsphere for sustainable photocatalytic wastewater treatment. J Clean Prod 3:14. https://doi.org/10.1016/j.jclepro.2021.128033

    Article  CAS  Google Scholar 

  54. Saheed IO, Oh WD, Suah FBM (2021) Chitosan modifications for adsorption of pollutants—a review. J Hazard Mater 408:124889. https://doi.org/10.1016/j.jhazmat.2020.124889

    Article  CAS  PubMed  Google Scholar 

  55. Sessarego S, Rodrigues SCG, Xiao Y et al (2019) Phosphonium-enhanced chitosan for Cr(VI) adsorption in wastewater treatment. Carbohyd Polym 211:249–256. https://doi.org/10.1016/j.carbpol.2019.02.003

    Article  CAS  Google Scholar 

  56. Yang SC, Liao Y, Karthikeyan KG et al (2021) Mesoporous cellulose-chitosan composite hydrogel fabricated via the co-dissolution-regeneration process as biosorbent of heavy metals. Environ Pollut 286:117324. https://doi.org/10.1016/j.envpol.2021.117324

    Article  CAS  PubMed  Google Scholar 

  57. Wang Y, Lin N, Gong Y et al (2021) Cu-Fe embedded cross-linked 3D hydrogel for enhanced reductive removal of Cr(VI): characterization, performance, and mechanisms. Chemosphere 280:130663. https://doi.org/10.1016/j.chemosphere.2021.130663

    Article  CAS  PubMed  Google Scholar 

  58. Ao C, Zhao J, Li Q et al (2020) Biodegradable all-cellulose composite membranes for simultaneous oil/water separation and dye removal from water. Carbohyd Polym 250:116872. https://doi.org/10.1016/j.carbpol.2020.116872

    Article  CAS  Google Scholar 

  59. Ren J, Zhu Z, Qiu Y et al (2021) Enhanced adsorption performance of alginate/MXene/CoFe2O4 for antibiotic and heavy metal under rotating magnetic field. Chemosphere 284:131284. https://doi.org/10.1016/j.chemosphere.2021.131284

    Article  CAS  PubMed  Google Scholar 

  60. Mondal H, Karmakar M, Ghosh NN et al (2021) One-pot synthesis of sodium alginate-grafted-terpolymer hydrogel for As(III) and V(V) removal: In situ anchored comonomer and DFT studies on structures. J Environ Manag 294:112932. https://doi.org/10.1016/j.jenvman.2021.112932

    Article  CAS  Google Scholar 

  61. Xi H, Jiang H, Zhao D et al (2021) Highly selective adsorption of phosphate from high-salinity water environment using MgO-loaded and sodium alginate-immobilized bentonite beads. J Clean Prod. https://doi.org/10.1016/j.jclepro.2021.127773

    Article  Google Scholar 

  62. Cho E, Kim J, Park CW et al (2018) Chemically bound Prussian blue in sodium alginate hydrogel for enhanced removal of Cs ions. J Hazard Mater 360:243–249. https://doi.org/10.1016/j.jhazmat.2018.08.031

    Article  CAS  PubMed  Google Scholar 

  63. Jiang X, Wang H, Wang Q et al (2020) Immobilizing amino-functionalized mesoporous silica into sodium alginate for efficiently removing low concentrations of uranium. J Clean Prod. https://doi.org/10.1016/j.jclepro.2019.119162

    Article  PubMed  PubMed Central  Google Scholar 

  64. Jing B, Chu J, Qin Z et al (2020) Synthesis of amidoximated polyacrylonitrile nanoparticle/graphene composite hydrogel for selective uranium sorption from saline lake brine. Chem Eng J. https://doi.org/10.1016/j.cej.2019.123553

    Article  Google Scholar 

  65. Singh S, Bajwa BS, Kaur I (2020) (Zn/Co)-zeolitic imidazolate frameworks: room temperature synthesis and application as promising U(VI) scavengers—a comparative study. J Ind Eng Chem. https://doi.org/10.1016/j.jiec.2020.10.012

    Article  Google Scholar 

  66. Zhenyuan B, Qi L, Wang J et al (2020) Anti-biofouling and water-stable balanced charged metal organic framework-based polyelectrolyte hydrogels for extracting uranium from seawater. ACS Appl Mater Interfaces 2020:18012–18022. https://doi.org/10.1021/acsami.0c03007

    Article  CAS  Google Scholar 

  67. Wenting L, Yangyi L, Yang B et al (2020) Anchoring ZIF-67 particles on amidoximerized polyacrylonitrile fibers for radionuclide sequestration in wastewater and seawater. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.122692

    Article  Google Scholar 

  68. Xuejie G, Haocheng Y, Jun W et al (2020) A chitosan-graphene oxide/ZIF foam with anti-biofouling ability for uranium recovery from seawater. Chem Eng J. https://doi.org/10.1016/j.cej.2019.122850

    Article  Google Scholar 

  69. Yue L, Yingzhong H, Xiangke W et al (2021) Impact of metal ions and organic ligands on uranium removal properties by zeolitic imidazolate framework materials. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.123216

    Article  Google Scholar 

  70. Şimşek S, Şenol ZM, Ulusoy Hİ (2017) Synthesis and characterization of a composite polymeric material including chelating agent for adsorption of uranyl ions. J Hazard Mater 338:437–446. https://doi.org/10.1016/j.jhazmat.2017.05.059

    Article  CAS  PubMed  Google Scholar 

  71. Chongxiong D, Yi Z, Haochuan L et al (2020) Rapid room-temperature preparation of hierarchically porous metal-organic frameworks for efficient uranium removal from aqueous solutions. Nanomaterials 10(8):1539. https://doi.org/10.3390/nano10081539

    Article  CAS  Google Scholar 

  72. Douchao M, Lijia L, Hongxing D et al (2022) Efficient uranium adsorbent with antimicrobial function constructed by grafting amidoxime groups on ZIF-90 via malononitrile intermediate. J Hazard Mater 42:2. https://doi.org/10.1016/j.jhazmat.2021.126872

    Article  CAS  Google Scholar 

  73. Yuzhi Z, Dongxue L, Chang L et al (2021) Adsorption optimization of uranium(VI) onto polydopamine and sodium titanate co-functionalized MWCNTs using response surface methodology and a modeling approach. Colloids Surf A Physicochem Eng Asp. https://doi.org/10.1016/j.colsurfa.2021.127145

    Article  Google Scholar 

  74. Şenol ZM, Gül ÜD, Şimşek S (2021) Bioremoval of Safranin O dye by the identified lichen species called Evernia prunastri biomass: biosorption optimization, isotherms, kinetics, and thermodynamics. Biomass Conv Bioref. https://doi.org/10.1007/s13399-020-01216-9

    Article  Google Scholar 

  75. Şenol ZM, Şenol Arslan D, Şimşek S (2019) Preparation and characterization of a novel diatomite-based composite and investigation of its adsorption properties for uranyl ions. J Radioanal Nucl Ch 321:791–803. https://doi.org/10.1007/s10967-019-06662-y

    Article  CAS  Google Scholar 

  76. Dai ZR, Zhang H, Sui Y et al (2018) Preparation of polyamidoxime/magnetic graphene oxide composite and its application for efficient extraction of uranium(VI) from aqueous solutions in an ultrasonic field. J Chem Eng Data 63(11):4215–4225. https://doi.org/10.1021/acs.jced.8b00703

    Article  CAS  Google Scholar 

  77. Yin ZL, Xiong J, Chen M et al (2016) Recovery of uranium(VI) from aqueous solution by amidoxime functionalized wool fibers. J Radioanal Nucl Ch 307:1471–1479. https://doi.org/10.1007/s10967-015-4534-2

    Article  CAS  Google Scholar 

  78. Zhang HJ, Zhang LX, Han XL et al (2018) Guanidine and amidoxime cofunctionalized polypropylene nonwoven fabric for potential uranium seawater extraction with antifouling property. Ind Eng Chem Res 57(5):1662–1670. https://doi.org/10.1021/acs.iecr.7b04687

    Article  CAS  Google Scholar 

  79. Wang XL, Zhou JB, Zhang Z et al (2021) Synthesis of PAO NFs and the adsorption for uranium (VI) in alkaline solution. J Radioanal Nucl Ch. https://doi.org/10.1007/s10967-021-08083-2

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (12175103), the Key R&D Program of Hunan Province (2018SK2029), the Hunan Provincial Natural Science Foundation for Excellent Young Scholars (2020JJ3028), and the Scientific Research Innovation Project for Graduate of Hunan Province (CX20200913), Scientific Research Fund of Hunan Provincial Education Department (21A0259).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Li.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, B., Li, L., Dai, Z. et al. Synthesis of amidoximated polyacrylonitrile/sodium alginate composite hydrogel beed and its use in selective and recyclable removal of U(VI). J Radioanal Nucl Chem 331, 1669–1682 (2022). https://doi.org/10.1007/s10967-022-08233-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08233-0

Keywords

Navigation