Skip to main content
Log in

Comparison of techniques to localise U-bearing particles in environmental samples

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This publication shows results of a comparison of three techniques for localising radioactive, and U-bearing particles in contrasted samples. Particles are localised by the means of three methods: (1) Fission Tracks (FT), (2) Imaging Plate (IP), and (3) real time autoradiography (BeaQuant®). These techniques were applied to various samples, including a sediment sampled in the vicinity of the Fukushima Dai-Ichi Nuclear Power Plant (FDNPP) and a sample made of pure U oxide particles. In addition, the efficiency of the combination of two methods (FT and IP) to localise specifically anthropogenic U-bearing particles was tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kashparov VA (2003) Hot Particles at Chernobyl. 10

  2. Salbu B, Krekling T, Oughton DH et al (1994) Hot particles in accidental releases from Chernobyl and Windscale nuclear installations. Analyst 119:125–130. https://doi.org/10.1039/AN9941900125

    Article  CAS  Google Scholar 

  3. Sandalls FJ, Segal MG, Victorova N (1993) Hot particles from chernobyl: a review. J Environ Radioact 18:5–22. https://doi.org/10.1016/0265-931X(93)90063-D

    Article  CAS  Google Scholar 

  4. Abe Y, Iizawa Y, Terada Y et al (2014) Detection of uranium and chemical state analysis of individual radioactive microparticles emitted from the Fukushima nuclear accident using multiple synchrotron radiation X-ray analyses. Anal Chem 86:8521–8525. https://doi.org/10.1021/ac501998d

    Article  CAS  PubMed  Google Scholar 

  5. Adachi K, Kajino M, Zaizen Y, Igarashi Y (2013) Emission of spherical cesium-bearing particles from an early stage of the Fukushima nuclear accident. Sci Rep 3:2554. https://doi.org/10.1038/srep02554

    Article  PubMed  PubMed Central  Google Scholar 

  6. Imoto J, Ochiai A, Furuki G et al (2017) Isotopic signature and nano-texture of cesium-rich micro-particles: Release of uranium and fission products from the Fukushima Daiichi Nuclear Power Plant. Sci Rep 7:5409. https://doi.org/10.1038/s41598-017-05910-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Furuki G, Imoto J, Ochiai A et al (2017) Caesium-rich micro-particles: a window into the meltdown events at the Fukushima Daiichi Nuclear Power Plant. Sci Rep 7:1–10. https://doi.org/10.1038/srep42731

    Article  CAS  Google Scholar 

  8. Kurihara Y, Takahata N, Yokoyama TD et al (2020) Isotopic ratios of uranium and caesium in spherical radioactive caesium-bearing microparticles derived from the Fukushima Dai-ichi Nuclear Power Plant. Sci Rep 10:1–10. https://doi.org/10.1038/s41598-020-59933-0

    Article  CAS  Google Scholar 

  9. Kurihara E, Takehara M, Suetake M et al (2020) Particulate plutonium released from the Fukushima Daiichi meltdowns. Sci Total Environ 743:140539. https://doi.org/10.1016/j.scitotenv.2020.140539

    Article  CAS  PubMed  Google Scholar 

  10. Martin PG, Griffiths I, Jones CP et al (2016) In-situ removal and characterisation of uranium-containing particles from sediments surrounding the Fukushima Daiichi Nuclear Power Plant. Spectrochim Acta B Atomic Spectrosc 117:1–7. https://doi.org/10.1016/j.sab.2015.12.010

    Article  CAS  Google Scholar 

  11. Martin PG, Louvel M, Cipiccia S et al (2019) Provenance of uranium particulate contained within Fukushima Daiichi Nuclear Power Plant Unit 1 ejecta material. Nat Commun 10:1–7. https://doi.org/10.1038/s41467-019-10937-z

    Article  CAS  Google Scholar 

  12. Martin PG, Jones CP, Cipiccia S et al (2020) Compositional and structural analysis of Fukushima-derived particulates using high-resolution x-ray imaging and synchrotron characterisation techniques. Sci Rep 10:1636. https://doi.org/10.1038/s41598-020-58545-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ochiai A, Imoto J, Suetake M et al (2018) Uranium dioxides and debris fragments released to the environment with cesium-rich microparticles from the Fukushima Daiichi Nuclear Power Plant. Environ Sci Technol 52:2586–2594. https://doi.org/10.1021/acs.est.7b06309

    Article  CAS  PubMed  Google Scholar 

  14. Satou Y, Sueki K, Sasa K et al (2018) Analysis of two forms of radioactive particles emitted during the early stages of the Fukushima Dai-ichi Nuclear Power Station accident. Geochem J 52:137–143. https://doi.org/10.2343/geochemj.2.0514

    Article  CAS  Google Scholar 

  15. Satou Y, Sueki K, Sasa K et al (2016) First successful isolation of radioactive particles from soil near the Fukushima Daiichi Nuclear Power Plant. Anthropocene 14:71–76. https://doi.org/10.1016/j.ancene.2016.05.001

    Article  Google Scholar 

  16. Igarashi Y, Kogure T, Kurihara Y et al (2019) A review of Cs-bearing microparticles in the environment emitted by the Fukushima Dai-ichi Nuclear Power Plant accident. J Environ Radioact 205–206:101–118. https://doi.org/10.1016/j.jenvrad.2019.04.011

    Article  CAS  PubMed  Google Scholar 

  17. Aarkrog A (1971) Radioecological investigations of plutonium in an arctic marine environment. Health Phys 20:31–47

    Article  CAS  PubMed  Google Scholar 

  18. Eriksson M, Ljunggren K, Hindorf C (2002) Plutonium hot particle separation techniques using real-time digital image systems. Nucl Instrum Methods Phys Res A Accel Spectrom Detect Assoc Equip 488:375–380. https://doi.org/10.1016/S0168-9002(02)00438-2

    Article  CAS  Google Scholar 

  19. Jiménez-Ramos MC, García-López J, García-Tenorio R, García-León M (2009) Characterization of terrestrial hot particles from the Palomares accident using destructive and non-destructive analytical techniques. Radioprotection 44:345–350. https://doi.org/10.1051/radiopro/20095067

    Article  Google Scholar 

  20. Jiménez-Ramos MC, García-Tenorio R, Vioque I et al (2006) Presence of plutonium contamination in soils from Palomares (Spain). Environ Pollut 142:487–492. https://doi.org/10.1016/j.envpol.2005.10.030

    Article  CAS  PubMed  Google Scholar 

  21. Pöllänen R, Ketterer ME, Lehto S et al (2006) Multi-technique characterization of a nuclearbomb particle from the Palomares accident. J Environ Radioact 90:15–28. https://doi.org/10.1016/j.jenvrad.2006.06.007

    Article  CAS  PubMed  Google Scholar 

  22. Donohue DL (2002) Peer reviewed: strengthened nuclear safeguards. Anal Chem 74:28A-35A. https://doi.org/10.1021/ac021909y

    Article  CAS  Google Scholar 

  23. Jaegler H, Pointurier F, Onda Y et al (2018) Plutonium isotopic signatures in soils and their variation (2011–2014) in sediment transiting a coastal river in the Fukushima Prefecture, Japan. Environ Pollut 240:167–176. https://doi.org/10.1016/j.envpol.2018.04.094

    Article  CAS  PubMed  Google Scholar 

  24. Esaka KT, Esaka F, Inagawa J et al (2004) Application of fission track technique for the analysis of individual particles containing uranium in safeguard swipe samples. Jpn J Appl Phys 43:L915. https://doi.org/10.1143/JJAP.43.L915

    Article  CAS  Google Scholar 

  25. Sardini P, Angileri A, Descostes M et al (2016) Quantitative autoradiography of alpha particle emission in geo-materials using the Beaver™ system. Nucl Instrum Methods Phys Res A Accel Spectrom Detect Assoc Equip 833:15–22. https://doi.org/10.1016/j.nima.2016.07.003

    Article  CAS  Google Scholar 

  26. Haudebourg R, Fichet P (2016) A non-destructive and on-site digital autoradiography-based tool to identify contaminating radionuclide in nuclear wastes and facilities to be dismantled. J Radioanal Nucl Chem 309:551–561. https://doi.org/10.1007/s10967-015-4610-7

    Article  CAS  Google Scholar 

  27. Chartin C, Evrard O, Onda Y et al (2013) Tracking the early dispersion of contaminated sediment along rivers draining the Fukushima radioactive pollution plume. Anthropocene 1:23–34. https://doi.org/10.1016/j.ancene.2013.07.001

    Article  Google Scholar 

  28. IAEA (2019) Environmental Sample Particle Analysis Interlaboratory Comparison

  29. Bonnet T, Comet M, Denis-Petit D et al (2013) Response functions of imaging plates to photons, electrons and 4He particles. Rev Sci Instrum 84:103510. https://doi.org/10.1063/1.4826084

    Article  CAS  PubMed  Google Scholar 

  30. Chen B, Zhuo W, Kong Y (2011) Identification and counting of alpha tracks by using an imaging plate. Radiat Measur 46:371–374. https://doi.org/10.1016/j.radmeas.2011.01.002

    Article  CAS  Google Scholar 

  31. Billon S, Sardini P, Leblond S, et al (2018) MAUD PROJECT-comparative study of 3 digital autoradiography techniques for characterization: gas detector-solid scintillation detector-phosphor screens

  32. Rahman NM, Iida T, Yamazawa H, Moriizumi J (2006) Determination of alpha particle detection efficiency of an imaging plate (IP) detector. Jpn J Health Phys 41:272–278. https://doi.org/10.5453/jhps.41.272

    Article  CAS  Google Scholar 

  33. Fichet P, Bresson F, Leskinen A et al (2012) Tritium analysis in building dismantling process using digital autoradiography. J Radioanal Nucl Chem 291:869–875. https://doi.org/10.1007/s10967-011-1423-1

    Article  CAS  Google Scholar 

  34. Radulović V, Kolšek A, Fauré A-L et al (2018) Qualification of heavy water based irradiation device in the JSI TRIGA reactor for irradiations of FT-TIMS samples for nuclear safeguards. Nucl Instrum Methods Phys Res A Accel Spectrom Detect Assoc Equip 885:139–144. https://doi.org/10.1016/j.nima.2017.12.046

    Article  CAS  Google Scholar 

  35. Donnard J, Berny R, Carduner H et al (2009) The micro-pattern gas detector PIM: a multi-modality solution for novel investigations in functional imaging. Nucl Instrum Methods Phys Res A Accel Spectrom Detect Assoc Equip 610:158–160. https://doi.org/10.1016/j.nima.2009.05.186

    Article  CAS  Google Scholar 

  36. Billon S, Sardini P, Angileri A et al (2020) Quantitative imaging of 226Ra ultratrace distribution using digital autoradiography: Case of doped celestines. J Environ Radioact 217:106211. https://doi.org/10.1016/j.jenvrad.2020.106211

    Article  CAS  PubMed  Google Scholar 

  37. Donnard J, Arlicot N, Berny R et al (2009) Advancements of labelled radio-pharmaceutics imaging with the PIM-MPGD. J Inst 4:P11022–P11022. https://doi.org/10.1088/1748-0221/4/11/P11022

    Article  CAS  Google Scholar 

  38. Donnard J, Thers D, Servagent N, Luquin L (2009) High spatial resolution in β-imaging with a PIM device. IEEE Trans Nucl Sci 56:197–200. https://doi.org/10.1109/TNS.2008.2005673

    Article  Google Scholar 

  39. Angileri A, Sardini P, Beaufort D et al (2020) Mobility of daughter elements of 238U decay chain during leaching by In Situ Recovery (ISR): new insights from digital autoradiography. J Environ Radioact 220–221:106274. https://doi.org/10.1016/j.jenvrad.2020.106274

    Article  CAS  PubMed  Google Scholar 

  40. Nishihara K, Iwamoto H, Suyama K (2012) Estimation of fuel compositions in Fukushima-Daiichi nuclear power plant. 202. doi:JAEA-Data/Code-2012–018

  41. Nasdala L, Hanchar JM, Rhede D et al (2010) Retention of uranium in complexly altered zircon: an example from Bancroft, Ontario. Chem Geol 269:290–300. https://doi.org/10.1016/j.chemgeo.2009.10.004

    Article  CAS  Google Scholar 

  42. Kalsi PC, Sawant PD, Ramaswami A, Manchanda VK (2007) Track etching characteristics of polyester track detector and its application to uranium estimation in seawater samples. J Radioanal Nucl Chem 273:473–477. https://doi.org/10.1007/s10967-007-6845-4

    Article  CAS  Google Scholar 

  43. Khan HA, Durrani SA (1972) Efficiency calibration of solid state nuclear track detectors. Nucl Instrum Methods 98:229–236. https://doi.org/10.1016/0029-554X(72)90103-6

    Article  CAS  Google Scholar 

  44. Jaegler H, Pointurier F, Onda Y et al (2019) Method for detecting and characterising actinide-bearing micro-particles in soils and sediment of the Fukushima Prefecture, Japan. J Radioanal Nucl Chem 321:57–69. https://doi.org/10.1007/s10967-019-06575-w

    Article  CAS  Google Scholar 

  45. Muuri E, Sorokina T, Donnard J et al (2019) Electronic autoradiography of 133Ba particle emissions; diffusion profiles in granitic rocks. Appl Radiation Isotopes 149:108–113. https://doi.org/10.1016/j.apradiso.2019.04.026

    Article  CAS  Google Scholar 

  46. Angileri A, Sardini P, Donnard J et al (2018) Mapping 238U decay chain equilibrium state in thin sections of geo-materials by digital autoradiography and microprobe analysis. Appl Radiat Isotopes 140:228–237. https://doi.org/10.1016/j.apradiso.2018.06.018

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Aurélie Diacre received a PhD fellowship from CEA (Commissariat à l’Energie Atomique et aux Energies Alternatives, France). Sample collection was supported by MITATE Lab (CNRS International Research Project) and AMORAD projects (Programme d’Investissements d’Avenir en Radioprotection et Sûreté Nucléaire, grant no. ANR-11-RSNR-0002). The Ai4R company staff is also acknowledged for the time invested in the current project, including that for optimising acquisitions in α mode and data post-processing. The authors are also grateful to Gabriel Lambrot for the theoretical analysis and Hugues Haedrich for his help to select the different experimental methods.

Funding

Direction des applications militaires.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurélie Diacre.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diacre, A., Fichet, P., Sardini, P. et al. Comparison of techniques to localise U-bearing particles in environmental samples. J Radioanal Nucl Chem 331, 1701–1714 (2022). https://doi.org/10.1007/s10967-022-08229-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08229-w

Keywords

Navigation