Skip to main content
Log in

Preparation of stoichiometric uranium dioxide (UO2.000) via electro-reduction method in LiCl molten salt

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A slight variation in O/U ratio usually exists in uranium dioxide, due to spontaneous oxidation in air. The conventional method to fabricate uranium dioxide by reducing triuranium octoxide in H2 atmosphere shows disadvantages in low safety and unstable quality in O/U ratio. In this paper, an effective method was proposed to fabricate stoichiometric uranium dioxide (UO2.000) powder, in which triuranium octoxide was directly electro-reduced to uranium dioxide in molten salt. The mechanism was analyzed and the quality of prepared sample was verified by XRD, Raman spectra and TG/DSC measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Assulin M, Yam R, Brandis M, Rubinshtein A, Zukran RS, Elish E, Shemesh A (2021) Oxygen isotopes of fuel pellets from the fifth collaborative materials exercise and uranium oxides reference materials determined by continuous flow laser fluorination mass spectrometry for nuclear forensic applications. J Radioanal Nucl Ch 329:757–768

    Article  CAS  Google Scholar 

  2. Labroche D, Dugne O, Chatillon C (2003) Thermodynamic properties of the O-U system. II-Critical assessment of the stability and composition range of the oxides UO2+x, U4O9-y and U3O8-z. J Nucl Mater 312(1):50–66

    Article  CAS  Google Scholar 

  3. Hassan A-R, El-Azab A, Yablinsky C, Allen T (2013) Defect disorder in UO2. J Solid State Chem 204:136–145

    Article  CAS  Google Scholar 

  4. Aronson S, Rulli JE, Schaner BE (1961) Electrical properties of nonstoichiometric uranium dioxide. J Chem Phys 35(4):1382–1388

    Article  CAS  Google Scholar 

  5. Saidy M, Hocking WH, Mouris JF, Garcia P, Carlot G, Pasquet B (2008) Thermal diffusion of iodine in UO2 and UO2+x. J Nucl Mater 372(2–3):405–415

    Article  CAS  Google Scholar 

  6. Lay KW, Carter BE (1969) Role of the O/U ratio on the sintering of UO2. J Nucl Mater 30(1–2):74–87

    Article  CAS  Google Scholar 

  7. Hung NT, Thuan LB, Khoai DV, Lee J-Y, Kumar JR (2016) Modeling conversion of ammonium diuranate (ADU) into uranium dioxide (UO2) powder. J Nucl Mater 479:483–488

    Article  CAS  Google Scholar 

  8. Pijolat M, Brun C, Valdivieso F, Soustelle M (1997) Reduction of uranium oxide U3O8 to UO2 by hydrogen. Solid State Ionics 101–103(2):931–935

    Article  Google Scholar 

  9. Brun C, Valdivieso F, Pijolat M, Soustelle M (1999) Reduction by hydrogen of U3O8 into UO2: nucleation and growth, influence of hydration. Phys Chem Chem Phys 1:471–477

    Article  CAS  Google Scholar 

  10. Yang JH, Rhee YW, Kang KW, Kim KS, Song KW, Lee SJ (2007) Formation of columnar and equiaxed grains by the reduction of U3O8 pellets to UO2+x. J Nucl Mater 360:208–213

    Article  CAS  Google Scholar 

  11. Schreinemachers C, Leinders G, Modolo G, Verwerft M, Binnemans K, Cardinaels T (2020) The conversion of ammonium uranate prepared via sol-gel synthesis into uranium oxides. Nucl Eng Technol 52(5):1013–1021

    Article  CAS  Google Scholar 

  12. Chen GZ, Fray DJ, Farthing TW (2000) Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature 407:361–364

    Article  CAS  PubMed  Google Scholar 

  13. Yan XY, Fray DJ (2005) Electrochemical studies on reduction of solid Nb2O5 in molten CaCl2-NaCl eutectic. II. Cathodic processes in electrodeoxidation of solid Nb2O5. J Electrochem. Soc. 152(10):308–318

    Article  Google Scholar 

  14. Schwandt C, Alexander DTL, Fray DJ (2009) The electro-deoxidation of porous titanium dioxide precursors in molten calcium chloride under cathodic potential control. Electrochim Acta 54(14):3819–3829

    Article  CAS  Google Scholar 

  15. Wang D, Qiu G, Jin X, Hu X, Chen GZ (2006) Electrochemical metallization of solid terbium oxide. Angew Chem 118(15):2444–2448

    Article  Google Scholar 

  16. Hur JM, Seo CS, Hong SS, Kang DS, Park SW (2003) Metallization of U3O8 via catalytic electrochemical reduction with Li2O in LiCl molten salt. React Kinet Catal Lett 80:217–222

    Article  CAS  Google Scholar 

  17. Chen GZ, Gordo E, Fray DJ (2004) Direct electrolytic preparation of chromium powder. Metall Mater Trans B 35(2):223–233

    Article  Google Scholar 

  18. Choi E-Y, Jeong SM (2015) Electrochemical processing of spent nuclear fuels: an overview of oxide reduction in pyroprocessing technology. Prog Nat Sci 25(6):572–582

    Article  CAS  Google Scholar 

  19. Kim SW, Heo DH, Lee SK, Jeon MK, Park W, Hur JM, Hong SS, Oh SC, Choi E-Y (2017) A preliminary study of pilot-scale electrolytic reduction of UO2 using a graphite anode. Nucl Eng Technol 49:1451–1456

    Article  CAS  Google Scholar 

  20. Perrin S, Pijolat M, Valdivieso F, Soustelle M (2001) Kinetic study of the effect of a sudden change in temperature during the reduction of U3O8 into UO2 by hydrogen. Solid State Ionics 141–142(1):109–115

    Article  Google Scholar 

  21. Sakamura Y, Kurata M, Inoue T (2006) Electrochemical reduction of UO2 in molten CaCl2 or LiCl. J Electrochem Soc 153(3):D31–D39

    Article  CAS  Google Scholar 

  22. Qiu GH, Ma M, Wang DH, Jin XB, Hu XH, Chen GZ (2005) Metallic cavity electrodes for investigation of powders electrochemical reduction of NiO and Cr2O3 powders in molten CaCl2. J Electrochem Soc 152:E328–E336

    Article  CAS  Google Scholar 

  23. Jiang KW, Liu Q, Liu JY, Zhang HS, Chen RR, Yan YD, Li RM, Song DL, Shao YW, Wang J (2018) Electrochemical mix-reduction process of U and U-Fe alloys on the surface of cathode in LiCl-KCl-U3O8 at 773 K. ChemElectroChem 5(19):2738–2746

    Article  CAS  Google Scholar 

  24. Du YF, Tang H, Zhang DZ, Shao L, Li YR, Gao R, Yang ZL, Li BQ, Chu MF, Liao JS (2021) Electro-reduction processes of U3O8 to metallic U bulk in LiCl molten salt. J Nucl Mater 543:152627

    Article  CAS  Google Scholar 

  25. Abramoeski M, Redfern SE, Grimes EW, Owens S (2001) Modification of UO2 crystal morphologies through hydroxylation. Surf Sci 490(3):415–420

    Article  Google Scholar 

  26. Zhu Y, Hallberg H (2015) Investigation of faceted void morphologies in UO2 by phase field modelling. J Nucl Mater 467(1):113–120

    Article  CAS  Google Scholar 

  27. Ge L, Subhash G, Baney RH, Tulenko JS (2014) Influence of processing parameters on thermal conductivity of uranium dioxide pellets prepared by spark plasma sintering. J Eur Ceram Soc 34(7):1791–1801

    Article  CAS  Google Scholar 

  28. Teske K, Ullmann H, Rettig D (1983) Investigation of the oxygen activity of oxide fuels and fuel-fission product systems by solid-electrolyte techniques. Part I: qualification and limitations of the method. J Nucl Mater 116(2–3):260–266

    Article  CAS  Google Scholar 

  29. Yakub E, Ronchi C, Staicu D (2009) Computer simulation of defects formation and equilibrium in non-stoichiometric uranium dioxide. J Nucl Mater 389(1):119–126

    Article  CAS  Google Scholar 

  30. Cardinaels T, Govers K, Vos B, Berghe VD, Verwerft M, Tollenaere LD, Maier G, Delafoy C (2012) Chromia doped UO2 fuel: investigation of the lattice parameter. J Nucl Mater 424(1–3):252–260

    Article  CAS  Google Scholar 

  31. Hartwig J, Holzer G, Forster E, Goetz K, Wokulska K, Wolf J (1994) Remeasurement of characteristic X-ray emission lines and their application to line profile analysis and lattice parameter determination. Phys Stat Sol A 143(1):23–34

    Article  CAS  Google Scholar 

  32. Leinders G, Cardinaels T, Binnemans K, Verwerft M (2015) Accurate lattice parameter measurements of stoichiometric uranium dioxide. J Nucl Mater 459:135–142

    Article  CAS  Google Scholar 

  33. Palacios ML, Taylor SH (2000) Characterization of uranium oxides using in situ micro-Raman spectroscopy. Appl Spectrosc 54(9):1372–1378

    Article  CAS  Google Scholar 

  34. He H, Shoesmith D (2010) Raman spectroscopic studies of defect structures and phase transition in hyper-stoichiometric UO2+x. Phys Chem Chem Phys 12(28):8108–8117

    Article  CAS  PubMed  Google Scholar 

  35. Desgranges L, Baldinozzi G, Simon P, Guimbretiere G, Canizares A (2012) Raman spectrum of U4O9: a new interpretation of damage lines in UO2. J Raman Spectrosc 43(3):455–458

    Article  CAS  Google Scholar 

  36. Elorrieta JM, Bonales LJ, Naji M, Manara D, Baonza VG, Cobos J (2018) Laser-induced oxidation of UO2: a Raman study. J Raman Spectrosc 49(5):878–884

    Article  CAS  Google Scholar 

  37. Lee J, Kim J, Youn Y-S, Kim J-Y, Lim SH (2018) Raman spectroscopic study of the structural change of uranium-thorium-mixed oxides before and after oxidation. J Radioanal Nucl Ch 316(3):1295–1300

    Article  CAS  Google Scholar 

  38. Livneh T, Sterer E (2006) Effect of pressure on the resonant multiphonon Raman scattering in UO2. Phys Rev B 73(8):085118

    Article  Google Scholar 

  39. Lv J, Li G, Guo S, Shi Y (2015) Raman scattering from phonons and electronic excitations in UO2 with different oxygen isotopes. J Raman Spectrosc 47(3):345–349

    Article  Google Scholar 

  40. Onofri C, Sabathier C, Palancher H, Carlot G, Miro S, Serruys Y, Desgranges L, Legros M (2016) Evolution of extended defects in polycrystalline UO2 under heavy ion irradiation: combined TEM XRD and Raman study. Nucl Instrum Meth B 374:51–57

    Article  CAS  Google Scholar 

  41. Rickert K, Prusnick TA, Kimani MM, Moore EA, Merriman CA, Mann JM (2019) Assessing UO2 sample quality with u-Raman spectrosvopy. J Nucl Mater 514:1–11

    Article  CAS  Google Scholar 

  42. Costa DR, Hedberg M, Middleburgh SC, Wallenius J, Olsson P, Lopes DA (2021) Oxidation of UN/U2N3-UO2 composites: an evaluation of UO2 as an oxidation barrier for the nireide phases. J Nucl Mater 544:152700

    Article  CAS  Google Scholar 

  43. Rousseau G, Desgranges L, Charlot F, Millot N, Niepce JC, Pijolat M, Valdivieso F, Baldinozzi G, Berar JF (2006) A detailed study of UO2 to U3O8 oxidation phases and the associated rate-limiting steps. J Nucl Mater 355:1–3

    Article  Google Scholar 

  44. McEachern RJ (1997) A review of kinetic data on the rate of U3O7 formation on UO2. J Nucl Mater 245(2–3):238–247

    Article  CAS  Google Scholar 

  45. McEachern RJ, Taylor P (1998) A review of the oxidation of uranium dioxide at temperatures below 400 °C. J Nucl Mater 254(2–3):87–121

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from Institute of Materials, China Academy of Engineering Physics (Grant No. TP02201705) and National Natural Science Foundation of China (No. 21806152).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Tang or Junsheng Liao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Tang, H., Shao, L. et al. Preparation of stoichiometric uranium dioxide (UO2.000) via electro-reduction method in LiCl molten salt. J Radioanal Nucl Chem 331, 1601–1608 (2022). https://doi.org/10.1007/s10967-022-08227-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08227-y

Keywords

Navigation