Skip to main content
Log in

Synergistic removal of glyphosate and U(VI) from aqueous solution by goethite: adsorption behaviour and mechanism

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Metals and glyphosate (GPS) herbicides adsorbed on minerals affects their mobility and environmental effects. In this study, using goethite as a model soil mineral, GPS and uranium as contaminants to investigate the effects of GPS on adsorption of uranium. The effects of solution pH, initial concentration and contact time on adsorption were investigated. When the initial pH is 4.0, the highest adsorption capacity of goethite for uranium with the absence GPS and the presence of GPS are 69.39 mg g−1 and 78.84 mg g−1 respectively. The adsorption kinetics can be well described by quasi second-order model, and the adsorption process can be described by Langmuir isotherm. Additional evidence for the uptake mechanism was obtained using FTIR and XPS. The carboxylic acid and phosphonic acid groups of the GPS molecule participated in the reaction with goethite and uranium to form goethite-GPS-U(VI) ternary complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wu W, Chen Z, Huang Y, Li J, Chen D, Chen N, Su M (2021) Red mud for the efficient adsorption of U(VI) from aqueous solution: influence of calcination on performance and mechanism. J Hazard Mater 409:124925. https://doi.org/10.1016/j.jhazmat.2020.124925

    Article  CAS  PubMed  Google Scholar 

  2. Celikbıcak O, Bayramoglu G, Acıkgoz-Erkaya I, Arica MY (2021) Aggrandizement of uranium(VI) removal performance of Lentinus concinnus biomass by attachment of 2,5-diaminobenzenesulfonic acid ligand. J Radioanal Nucl Chem 328:1085–1098. https://doi.org/10.1007/s10967-021-07708-w

    Article  CAS  Google Scholar 

  3. Skwarek E, Gladysz-Plaska A, Choromanska JB, Broda E (2019) Adsorption of uranium ions on nano-hydroxyapatite and modified by Ca and Ag ions. Adsorption 25::639–647. https://doi.org/10.1007/s10450-019-00063-z

    Article  CAS  Google Scholar 

  4. Bayramoglu G, Arica MY (2017) Polyethylenimine and tris(2-aminoethyl)amine modified p(GA–EGMA) microbeads for sorption of uranium ions: equilibrium, kinetic and thermodynamic studies. J Radioanal Nucl Chem 312::293–303. https://doi.org/10.1007/s10967-017-5216-z

    Article  CAS  Google Scholar 

  5. Andreotti G, Koutros S, Hofmann JN, Sandler DP, Lubin JH, Lynch CF, Lerro CC, De Roos AJ, Parks CG, Alavanja MC et al (2018) Glyphosate use and cancer incidence in the agricultural health study. J Natl Cancer Inst 110:509–516. https://doi.org/10.1093/jnci/djx233

    Article  PubMed  Google Scholar 

  6. Soares SF, Amorim CO, Amaral JS, Trindade T, Daniel-da-Silva AL (2021) On the efficient removal, regeneration and reuse of quaternary chitosan magnetite nanosorbents for glyphosate herbicide in water. J Environ Chem Eng 9:105189. https://doi.org/10.1016/j.jece.2021.105189

    Article  CAS  Google Scholar 

  7. Wu Z, He X, Xue Y, Yang X, Li Y, Li Q, Yu B (2020) Cyclodextrins grafted MoS2/g-C3N4 as high-performance photocatalysts for the removal of glyphosate and Cr(VI) from simulated agricultural runoff. Chem Eng J 399:125747. https://doi.org/10.1016/j.cej.2020.125747

    Article  CAS  Google Scholar 

  8. Imfeld G, Meite F, Wiegert C, Guyot B, Masbou J, Payraudeau S (2020) Do rainfall characteristics affect the export of copper, zinc and synthetic pesticides in surface runoff from headwater catchments? Sci Total Environ 741:11. https://doi.org/10.1016/j.scitotenv.2020.140437

    Article  CAS  Google Scholar 

  9. Medalie L, Baker NT, Shoda ME, Stone WW, Meyer MT, Stets EG, Wilson M (2020) Influence of land use and region on glyphosate and aminomethylphosphonic acid in streams in the USA. Sci Total Environ 707::136008. https://doi.org/10.1016/j.scitotenv.2019.136008

    Article  CAS  Google Scholar 

  10. Zubrod JP, Bundschuh M, Arts G, Bruehl CA, Imfeld G, Knaebel A, Payraudeau S, Rasmussen JJ, Rohr J, Scharmueller A et al (2019) Fungicides: an overlooked pesticide class? Environ Sci Technol 53:3347–3365. https://doi.org/10.1021/acs.est.8b04392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vaschetto EG, Sicardi MI, Elias VR, Ferrero GO, Carraro PM, Casuscelli SG, Eimer GA (2019) Metal modified silica for catalytic wet air oxidation (CWAO) of glyphosate under atmospheric conditions. Adsorption 25:1299–1306. https://doi.org/10.1007/s10450-019-00090-w

    Article  CAS  Google Scholar 

  12. Trinelli MA, Areco MM, Afonso MD (2013) Co-biosorption of copper and glyphosate by Ulva lactuca. Colloid Surf B Biointerfaces 105:251–258. https://doi.org/10.1016/j.colsurfb.2012.12.047

    Article  CAS  PubMed  Google Scholar 

  13. Hansen LR, Roslev P (2016) Behavioral responses of juvenile Daphnia magna after exposure to glyphosate and glyphosate-copper complexes. Aquat Toxicol 179:36–43. https://doi.org/10.1016/j.aquatox.2016.08.010

    Article  CAS  PubMed  Google Scholar 

  14. Estes SL, Powell BA (2021) Response to comment on “Enthalpy of uranium adsorption onto hematite”. Environ Sci Technol 55:3444–3446. https://doi.org/10.1021/acs.est.0c08781

    Article  CAS  PubMed  Google Scholar 

  15. Ma Y, Cheng X, Kang ML, Yang GZ, Yin ML, Wang J, Gang S (2020) Factors influencing the reduction of U(VI) by magnetite. Chemosphere 254::9. https://doi.org/10.1016/j.chemosphere.2020.126855

    Article  CAS  Google Scholar 

  16. Linnikov OD, Krasil’nikov VN, Gyrdasova OI, Rodina IV, Baklanova IV, Tyutyunnik AP, Dyachkova TV, Suntsov AY, Sauerzopf F, Marchenkov VV (2018) Precursor synthesis of maghemite and its adsorption properties with respect to bivalent copper ions. Adsorption 24:629–636. https://doi.org/10.1007/s10450-018-9967-9

    Article  CAS  Google Scholar 

  17. Bylaska EJ, Catalano JG, Mergelsberg ST, Saslow SA, Qafoku O, Prange MP, Ilton ES (2019) Association of defects and zinc in hematite. Environ Sci Technol 53:13687–13694. https://doi.org/10.1021/acs.est.9b04323

    Article  CAS  PubMed  Google Scholar 

  18. Dhakal P, Coyne MS, McNear DH, Wendroth OO, Vandiviere MM, D’Angelo EM, Matocha CJ (2021) Reactions of nitrite with goethite and surface Fe(II)-goethite complexes. Sci Total Environ 782:146406. https://doi.org/10.1016/j.scitotenv.2021.146406

    Article  CAS  PubMed  Google Scholar 

  19. Liu J, Zhu RL, Ma LY, Fu HY, Lin XJ, Parker SC, Molinari M (2021) Adsorption of phosphate and cadmium on iron (oxyhydr)oxides: a comparative study on ferrihydrite, goethite, and hematite. Geoderma 383:11. https://doi.org/10.1016/j.geoderma.2020.114799

    Article  CAS  Google Scholar 

  20. Vazquez-Jaime M, Arcibar-Orozco JA, Damian-Ascencio CE, Saldana-Robles AL, Martinez-Rosales M, Saldana-Robles A, Cano-Andrade S (2020) Effective removal of arsenic from an aqueous solution by ferrihydrite/goethite graphene oxide composites using the modified Hummers method. J Environ Chem Eng 8::12. https://doi.org/10.1016/j.jece.2020.104416

    Article  CAS  Google Scholar 

  21. Wang S, Lei L, Zhang D, Zhang G, Cao R, Wang X, Lin J, Jia Y (2020) Stabilization and transformation of selenium during the Fe(II)-induced transformation of Se(IV)-adsorbed ferrihydrite under anaerobic conditions. J Hazard Mater 384:121365. https://doi.org/10.1016/j.jhazmat.2019.121365

    Article  CAS  PubMed  Google Scholar 

  22. Liu H, Chen T, Frost RL (2014) An overview of the role of goethite surfaces in the environment. Chemosphere 103:1–11. https://doi.org/10.1016/j.chemosphere.2013.11.065

    Article  CAS  PubMed  Google Scholar 

  23. Shi M, Min X, Ke Y, Lin Z, Yang Z, Wang S, Peng N, Yan X, Luo S, Wu J, Wei Y (2021) Recent progress in understanding the mechanism of heavy metals retention by iron (oxyhydr)oxides. Sci Total Environ 752:141930. https://doi.org/10.1016/j.scitotenv.2020.141930

    Article  CAS  PubMed  Google Scholar 

  24. Lahrouch F, Guo N, Hunault MOJY, Solari PL, Descostes M, Gerard M (2021) Uranium retention on iron oxyhydroxides in post-mining environmental conditions. Chemosphere 264:128473. https://doi.org/10.1016/j.chemosphere.2020.128473

    Article  CAS  PubMed  Google Scholar 

  25. Bhatt D, Gururani N, Srivastava A, Srivastava PC (2021) Sorption studies of 4-NP onto goethite: effects of contact time, pH, concentration, ionic strength and temperature. Environ Earth Sci 80:1–10. https://doi.org/10.1007/s12665-021-09566-x

    Article  CAS  Google Scholar 

  26. Guo Z, Li Y, Wu W (2009) Sorption of U(VI) on goethite: effects of pH, ionic strength, phosphate, carbonate and fulvic acid. Appl Radiat Isotopes 67:996–1000. https://doi.org/10.1016/j.apradiso.2009.02.001

    Article  CAS  Google Scholar 

  27. Tombácz E, Libor Z, Illés E, Majzik A, Klumpp E (2004) The role of reactive surface sites and complexation by humic acids in the interaction of clay mineral and iron oxide particles. Org Geochem 35::257–267

    Article  Google Scholar 

  28. Zhang Z, Liu H, Liu L, Song W, Sun Y (2019) Effect of Staphylococcus epidermidis on U(VI) sequestration by Al-goethite. J Hazard Mater 368:52–62. https://doi.org/10.1016/j.jhazmat.2019.01.022

    Article  CAS  PubMed  Google Scholar 

  29. Wu WC, Wang SL, Tzou YM, Chen JH, Wang MK (2007) The adsorption and catalytic transformations of chromium on Mn substituted goethite. Appl Catal B Environ 75:272–280. https://doi.org/10.1016/j.apcatb.2007.04.026

    Article  CAS  Google Scholar 

  30. Ahmed AA, Leinweber P, Kuehn O (2018) Unravelling the nature of glyphosate binding to goethite surfaces by ab initio molecular dynamics simulations. Phys Chem Chem Phys 20::1531–1539. https://doi.org/10.1039/c7cp06245a

    Article  CAS  Google Scholar 

  31. Tribe L, Kwon KD, Trout CC, Kubicki JD (2006) Molecular orbital theory study on surface complex structures of glyphosate on goethite: calculation of vibrational frequencies. Environ Sci Technol 40:3836–3841. https://doi.org/10.1021/es052363a

    Article  CAS  Google Scholar 

  32. Yan W, Jing C (2018) Molecular insights into glyphosate adsorption to goethite gained from ATR-FTIR, two-dimensional correlation spectroscopy, and DFT study. Environ Sci Technol 52::1946–1953. https://doi.org/10.1021/acs.est.7b05643

    Article  CAS  Google Scholar 

  33. Sheals J, Granstrom M, Sjoberg S, Persson P (2003) Coadsorption of Cu(II) and glyphosate at the water-goethite (alpha-FeOOH) interface: molecular structures from FTIR and EXAFS measurements. J Colloid Interface Sci 262:38–47. https://doi.org/10.1016/s0021-9797(03)00207-8

    Article  CAS  PubMed  Google Scholar 

  34. Wang Y-J, Zhou D-M, Sun R-J, Jia D-A, Zhu H-W, Wang S-Q (2008) Zinc adsorption on goethite as affected by glyphosate. J Hazard Mater 151::179–184. https://doi.org/10.1016/j.jhazmat.2007.05.060

    Article  CAS  Google Scholar 

  35. Yusan SD, Erenturk SA (2011) Sorption behaviors of uranium(VI) ions on α-FeOOH. Desalination 269:58–66

    Article  Google Scholar 

  36. Wang Y-J, Zhou D-M, Sun R-J, Cang L, Hao X-Z (2006) Cosorption of zinc and glyphosate on two soils with different characteristics. J Hazard Mater 137::76–82. https://doi.org/10.1016/j.jhazmat.2006.02.032

    Article  CAS  Google Scholar 

  37. Ramrakhiani L, Ghosh S, Mandal AK, Majumdar S (2019) Utilization of multi-metal laden spent biosorbent for removal of glyphosate herbicide from aqueous solution and its mechanism elucidation. Chem Eng J 361:1063–1077. https://doi.org/10.1016/j.cej.2018.12.163

    Article  CAS  Google Scholar 

  38. Arica MY, Bayramoglu G (2016) Polyaniline coated magnetic carboxymethylcellulose beads for selective removal of uranium ions from aqueous solution. J Radioanal Nucl Chem 310::711–724. https://doi.org/10.1007/s10967-016-4828-z

    Article  CAS  Google Scholar 

  39. Undabeytia T, Morillo E, Maqueda C (2002) FTIR study of glyphosate-copper complexes. J Agric Food Chem 50:1918–1921. https://doi.org/10.1021/jf010988w

    Article  CAS  Google Scholar 

  40. Zhou D-M, Wang Y-J, Cang L, Hao X-Z, Luo X-S (2004) Adsorption and cosorption of cadmium and glyphosate on two soils with different characteristics. Chemosphere 57:1237–1244. https://doi.org/10.1016/j.chemosphere.2004.08.043

    Article  CAS  PubMed  Google Scholar 

  41. Sheals J, Persson P, Hedman B (2001) IR and EXAFS spectroscopic studies of glyphosate protonation and copper(II) complexes of glyphosate in aqueous solution. Inorg Chem 40::4302–4309. https://doi.org/10.1021/ic000849g

    Article  CAS  Google Scholar 

  42. Zhang X, Jiang T, Xie C, Peng Y, Li M, Zhong Y (2018) Preparation of a phosphate-modified flower-like alpha-FeOOH composite and its application for aqueous U(VI) removal. Water Air Soil Pollut 229:1–11. https://doi.org/10.1007/s11270-018-3722-4

    Article  CAS  Google Scholar 

  43. Missana T, Garcia-Gutierrez M, Maffiotte C (2003) Experimental and modeling study of the uranium(VI) sorption on goethite. J Colloid Interface Sci 260:291–301. https://doi.org/10.1016/s0021-9797(02)00246-1

    Article  CAS  PubMed  Google Scholar 

  44. Erkaya IA, Arica MY, Akbulut A, Bayramoglu G (2014) Biosorption of uranium(VI) by free and entrapped Chlamydomonas reinhardtii: kinetic, equilibrium and thermodynamic studies. J Radioanal Nucl Chem 299::1993–2003. https://doi.org/10.1007/s10967-014-2964-x

    Article  CAS  Google Scholar 

  45. Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens Handlingar, p 24

  46. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  47. Freundlich H (1906) Concerning adsorption in solutions. Z Phys Chem Stoechiom Verwandtschafts 57:385–470

    Google Scholar 

  48. Sprynskyy M, Kowalkowski T, Tutu H, Cukrowska EM, Buszewski B (2011) Adsorption performance of talc for uranium removal from aqueous solution. Chem Eng J 171:1185–1193. https://doi.org/10.1016/j.cej.2011.05.022

    Article  CAS  Google Scholar 

  49. Li M, Liu H, Chen T, Dong C, Sun Y (2019) Synthesis of magnetic biochar composites for enhanced uranium(VI) adsorption. Sci Total Environ 651::1020–1028. https://doi.org/10.1016/j.scitotenv.2018.09.259

    Article  CAS  PubMed  Google Scholar 

  50. Liu H, Zhu Y, Xu B, Li P, Sun Y, Chen T (2017) Mechanical investigation of U(VI) on pyrrhotite by batch, EXAFS and modeling techniques. J Hazard Mater 322::488–498. https://doi.org/10.1016/j.jhazmat.2016.10.015

    Article  CAS  PubMed  Google Scholar 

  51. Ahmed W, Mehmood S, Nunez-Delgado A, Ali S, Qaswar M, Khan ZH, Ying H, Chen D-Y (2021) Utilization of Citrullus lanatus L. seeds to synthesize a novel MnFe2O4-biochar adsorbent for the removal of U(VI) from wastewater: insights and comparison between modified and raw biochar. Sci Total Environ 771:144955. https://doi.org/10.1016/j.scitotenv.2021.144955

    Article  CAS  PubMed  Google Scholar 

  52. Yusan S, Erenturk S (2011) Sorption behaviors of uranium(VI) ions on alpha-FeOOH. Desalination 269:58–66. https://doi.org/10.1016/j.desal.2010.10.042

    Article  CAS  Google Scholar 

  53. Sherman DM, Peacock CL, Hubbard CG (2008) Surface complexation of U(VI) on goethite (alpha-FeOOH). Geochim Cosmochim Acta 72:298–310. https://doi.org/10.1016/j.gca.2007.10.023

    Article  CAS  Google Scholar 

  54. Zhang X, Zhang L, Liu Y, Li M, Wu X, Jiang T, Chen C, Peng Y (2020) Mn-substituted goethite for uranium immobilization: a study of adsorption behavior and mechanisms. Environ Pollut 262:114184. https://doi.org/10.1016/j.envpol.2020.114184

    Article  CAS  PubMed  Google Scholar 

  55. Lakshmipathiraj P, Narasimhan BRV, Prabhakar S, Raju GB (2006) Adsorption of arsenate on synthetic goethite from aqueous solutions. J Hazard Mater 136:281–287. https://doi.org/10.1016/j.jhazmat.2005.12.015

    Article  CAS  PubMed  Google Scholar 

  56. Sheals J, Sjoberg S, Persson P (2002) Adsorption of glyphosate on goethite: molecular characterization of surface complexes. Environ sci technol 36:3090–3095. https://doi.org/10.1021/es010295w

    Article  CAS  PubMed  Google Scholar 

  57. Barkleit A, Foerstendorf H, Li B, Rossberg A, Moll H, Bernhard G (2011) Coordination of uranium(VI) with functional groups of bacterial lipopolysaccharide studied by EXAFS and FT-IR spectroscopy. Dalton T 40:9868–9876. https://doi.org/10.1039/c1dt10546a

    Article  CAS  Google Scholar 

  58. Xu J, Gu X, Guo Y, Tong F, Chen L (2016) Adsorption behavior and mechanism of glufosinate onto goethite. Sci Total Environ 560:123–130. https://doi.org/10.1016/j.scitotenv.2016.03.239

    Article  CAS  PubMed  Google Scholar 

  59. Lindegren M, Persson P (2009) Competitive adsorption between phosphate and carboxylic acids: quantitative effects and molecular mechanisms. Eur J Soil Sci 60:982–993. https://doi.org/10.1111/j.1365-2389.2009.01171.x

    Article  CAS  Google Scholar 

  60. Waiman CV, Avena MJ, Regazzoni AE, Zanini GP (2013) A real time in situ ATR-FTIR spectroscopic study of glyphosate desorption from goethite as induced by phosphate adsorption: effect of surface coverage. J Colloid Interface Sci 394:485–489. https://doi.org/10.1016/j.jcis.2012.12.063

    Article  CAS  PubMed  Google Scholar 

  61. Guo F, Zhou M, Xu J, Fein JB, Yu Q, Wang Y, Huang Q, Rong X (2021) Glyphosate adsorption onto kaolinite and kaolinite-humic acid composites: experimental and molecular dynamics studies. Chemosphere 263:127979. https://doi.org/10.1016/j.chemosphere.2020.127979

    Article  CAS  Google Scholar 

  62. Coutinho CFB, Mazo LH (2005) Complexos metálicos com o herbicida glifosato: revisão. Quí Nova 28:1038–1045. https://doi.org/10.1590/s0100-40422005000600019

    Article  CAS  Google Scholar 

  63. Ramstedt M, Norgren C, Shchukarev A, Sjoberg S, Persson P (2005) Co-adsorption of cadmium(II) and glyphosate at the water-manganite (gamma-MnOOH) interface. J Colloid Interface Sci 285:493–501. https://doi.org/10.1016/j.jcis.2004.12.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support by the National Natural Science Foundation of China (Grant No. 51874180, 51704169) and the Hunan Provincial Department of Education Scientific Research Project (Grant No. 19A417) and Science and Technology Innovation Platform Plan of Hengyang (Grant No. 202150083887) are gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowen Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhang, J., Peng, Y. et al. Synergistic removal of glyphosate and U(VI) from aqueous solution by goethite: adsorption behaviour and mechanism. J Radioanal Nucl Chem 331, 1807–1819 (2022). https://doi.org/10.1007/s10967-022-08223-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08223-2

Keywords

Navigation