Skip to main content
Log in

Development and optimization of a simple internal beam current monitoring approach using 29Si(p,p′γ)29Si reaction in particle induced gamma-ray emission for compositional characterization of glass samples and application to automobile windshield glasses

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Beam current monitoring or normalization is an important aspect in ion beam analysis utilizing particle accelerator for materials characterization. We present an innovative idea of using 29Si, present in the sample, as an internal beam current normalizer for the quantification of low Z elements by particle induced gamma ray emission (PIGE) method. The current normalized count rate of analytes (Si, Na, Mg, Al and/or B) with respect to prompt gamma-ray at 1273 keV from nuclear reaction 29Si(p,p′γ)29Si is utilized for the concentration determination. Quality control exercise was carried by analyzing certified/standard reference materials of sodalime and borosilicates glasses. Cross validation of proposed method was carried out by analysing two different glass samples by three different methods namely in situ current normalized PIGE method using fluorine as current normalizer, external PIGE using tantalum as current normalizer and ED-XRF. Analysis of variance and student’s t test were performed to examine the reliability of the results. The optimized method was applied for chemical characterization of forensically important automobile windshield glass samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Janni JF (1982) At Data Nucl Data Tables 27:341–529. https://doi.org/10.1016/0092-640x(82)90005-5

    Article  CAS  Google Scholar 

  2. Sharma V, Acharya R, Samanta SK, Goswami M, Acharya R, Pujari PK (2020) J Radioanal Nucl Chem 323:1451–1457. https://doi.org/10.1007/s10967-019-06926-7

    Article  CAS  Google Scholar 

  3. Dasari KB, Acharya R, Ray DK, Lakshmana Das N (2017) X-ray Spectrom 46(3):180–185. https://doi.org/10.1002/xrs.2744

    Article  CAS  Google Scholar 

  4. Mahnke H-E, Denker A, Salomon J (2009) C R Phys 10(7):660–675. https://doi.org/10.1016/j.crhy.2009.08.003

    Article  CAS  Google Scholar 

  5. Calligaro T, Mossmann A, Poirot J-P, Querré G (1998) Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 136–138:846–850. https://doi.org/10.1016/s0168-583x(97)00894-x

    Article  Google Scholar 

  6. Mandò PA, Fedi ME, Grassi N, Migliori A (2005) Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 239(1–2):71–76. https://doi.org/10.1016/j.nimb.2005.06.181

    Article  CAS  Google Scholar 

  7. Guerra MF (2004) Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 226(1–2):185–198. https://doi.org/10.1016/j.nimb.2004.02.019

    Article  CAS  Google Scholar 

  8. Beck L, Pichon L, Moignard B, Guillou T, Walter P (2011) Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 269(24):2999–3005. https://doi.org/10.1016/j.nimb.2011.04.059

    Article  CAS  Google Scholar 

  9. Mandò PA (1994) Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 85(1–4):815–823. https://doi.org/10.1016/0168-583x(94)95930-7

    Article  Google Scholar 

  10. Sadek H (2015) Appl Surf Sci 332:281–286. https://doi.org/10.1016/j.apsusc.2015.01.115

    Article  CAS  Google Scholar 

  11. Sokaras D, Karydas AG, Oikonomou A et al (2009) Anal Bioanal Chem 395:2199–2209. https://doi.org/10.1007/s00216-009-3156-3

    Article  CAS  PubMed  Google Scholar 

  12. Budnar M, Uršič M, Simčič J, Pelicon P, Kolar J, Šelih VS, Strlič M (2006) Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 243(2):407–416. https://doi.org/10.1016/j.nimb.2005.10.013

    Article  CAS  Google Scholar 

  13. Chu P-C, Cai BY, Tsoi YK, Yuen R, Leung KSY, Cheung N-H (2013) Anal Chem 85(9):4311–4315. https://doi.org/10.1021/ac400378q

    Article  CAS  PubMed  Google Scholar 

  14. Samanta SK, Raja SW, Sharma V et al (2020) J Radioanal Nucl Chem 325:923–931. https://doi.org/10.1007/s10967-020-07266-7

    Article  CAS  Google Scholar 

  15. Sharma V, Acharya R, Bagla Hemlata K, Pujari PK (2021) J Anal At Spectrom 36:630–643. https://doi.org/10.1039/D0JA00482K

    Article  CAS  Google Scholar 

  16. Herrmann F, Grambole D (1995) Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 104(1–4):26–30. https://doi.org/10.1016/0168-583x(95)00397-5

    Article  CAS  Google Scholar 

  17. Pászti F, Manuaba A, Hajdu C, Melo AA, Da Silva MF (1990) Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 47(2):187–192. https://doi.org/10.1016/0168-583x(90)90028-s

    Article  Google Scholar 

  18. El Bouanani M, Pelicon P, Razpet A, Čadež I, Budnar M, Simčič J, Markelj S (2006) Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 243(2):392–396. https://doi.org/10.1016/j.nimb.2005.09.002

    Article  CAS  Google Scholar 

  19. Lucarelli F, Calzolai G, Chiari M, Giannoni M, Mochi D, Nava S, Carraresi L (2014) Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 318:55–59. https://doi.org/10.1016/j.nimb.2013.05.099

    Article  CAS  Google Scholar 

  20. Chhillar S, Acharya R, Sodaye S, Sudarshan K, Santra S, Mishra RK, Pujari PK (2011) J Radioanal Nucl Chem 294(1):115–119. https://doi.org/10.1007/s10967-011-1525-9

    Article  CAS  Google Scholar 

  21. Calligaro T, Dran J-C, Moignard B, Pichon L, Salomon J, Walter P (2002) Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 188(1–4):135–140. https://doi.org/10.1016/s0168-583x(01)01062-x

    Article  CAS  Google Scholar 

  22. Lill J-O, Saarela K-E, Hernberg FJ, Heselius S-J, Harju L (1993) Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 83(3):387–393. https://doi.org/10.1016/0168-583x(93)95861-x

    Article  CAS  Google Scholar 

  23. Solin O, Kronman D, Lindblom P, Rosengård U, Vuorinen K (1988) Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 268(1):209–211. https://doi.org/10.1016/0168-9002(88)90608-0

    Article  Google Scholar 

  24. Lill J-O (1999) Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 150(1–4):114–117. https://doi.org/10.1016/s0168-583x(98)01074-x

    Article  CAS  Google Scholar 

  25. Chhillar S, Acharya R, Pai RV, Sodaye S, Mukerjee SK, Pujari PK (2009) Explor Res At Miner 19:188–190

    Google Scholar 

  26. Chhillar S, Acharya R, Pai RV, Sodaye S, Mukerjee SK, Pujari PK (2012) J Radioanal Nucl Chem 293(1):437–441. https://doi.org/10.1007/s10967-012-1764-4

    Article  CAS  Google Scholar 

  27. Chhillar S, Acharya R, Vittal Rao TV, Bamankar YR, Mukerjee SK, Pujari PK, Aggarwal SK (2013) J Radioanal Nucl Chem 298(3):1597–1603. https://doi.org/10.1007/s10967-013-2609-5

    Article  CAS  Google Scholar 

  28. Chhillar S, Acharya R, Sodaye S, Pujari PK (2014) Anal Chem 86(22):11167–11173. https://doi.org/10.1021/ac5024292

    Article  CAS  PubMed  Google Scholar 

  29. Dasari KB, Chhillar S, Acharya R, Ray DK, Behera A, Lakshmana Das N, Pujari PK (2014) Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 339:37–41. https://doi.org/10.1016/j.nimb.2014.08.017

    Article  CAS  Google Scholar 

  30. Srivastava A, Chhillar S, Singh D, Acharya R, Pujari PK (2014) J Radioanal Nucl Chem 302(3):1461–1464. https://doi.org/10.1007/s10967-014-3661-5

    Article  CAS  Google Scholar 

  31. Chhillar S, Acharya R, Tripathi R, Sodaye S, Sudarshan K, Rout PC, Pujari PK (2015) J Radioanal Nucl Chem 305(2):463–467. https://doi.org/10.1007/s10967-015-4037-1

    Article  CAS  Google Scholar 

  32. Tamilarasu S, Velraj G, Ray DK, Acharya R (2016) J Radioanal Nucl Chem 310(1):363–370. https://doi.org/10.1007/s10967-016-4842-1

    Article  CAS  Google Scholar 

  33. Dhorge PS, Acharya R, Rajurkar NS, Chahar V, Tuli V, Srivastava A, Pujari PK (2016) J Radioanal Nucl Chem 311(3):1803–1809. https://doi.org/10.1007/s10967-016-5118-5

    Article  CAS  Google Scholar 

  34. Chhillar S, Acharya R, Mishra RK, Kaushik CP, Pujari PK (2017) J Radioanal Nucl Chem 312(3):567–576. https://doi.org/10.1007/s10967-017-5251-9

    Article  CAS  Google Scholar 

  35. Acharya R, Raja SW, Chhillar S, Gupta J, Sonber JK, Murthy TSRC, Pujari P (2018) K. J Anal At Spectrom 33(5):784–791. https://doi.org/10.1039/c7ja00416h

    Article  CAS  Google Scholar 

  36. ASTM E2927-16 Standard test method for determination of trace elements in soda-lime glass samples using laser ablation Inductively coupled plasma mass spectrometry for forensic comparisions. https://doi.org/10.1520/E2927-16E01

  37. ASTM E2926-13 Standard test method for forensic comparison of glass using micro X-ray fluorescence spectrometry. https://doi.org/10.1520/E2926-17

  38. Savidou A, Aslanoglou X, Paradellis T, Pilakouta M (1999) Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 152(1):12–18. https://doi.org/10.1016/s0168-583x(98)00962-8

    Article  CAS  Google Scholar 

  39. https://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf

  40. http://users.sussex.ac.uk/~grahamh/RM1web/F-ratio%20table%202005.pdf

Download references

Acknowledgements

This work was carried out as a part of IAEA Co-ordinated Research Project (CRP) on “Enhancing Nuclear Analytical Techniques to Meet the Needs of Forensic Sciences (CRP Code: F11021)” and UGC-DAE-CSR Mumbai Centre project CRS-M-284. One of the authors, Dr. Hemlata K. Bagla is thankful to UGC-DAE CSR Mumbai Centre for providing funding for research. Authors sincerely thank Dr. Olga Girshevitz, Head of Surface Analysis Facility & Ion Beam Analysis Lab, Bar Ilan Institute of Nanotechnology and Advanced Materials (BINA), Israel for providing automobile glass samples and other details (like Brand/model/year) under IAEA CRP. Authors are thankful to Head IADD; Mr. A. Aggarwal, OIC, FOTIA and all FOTIA operation crew members for their cooperation during sample irradiation. Mr. V. Sharma, SRF, is thankful to CSIR, New Delhi, India for Fellowship, and also thankful to Dr. P.K. Mohapatra, Head, RCD, RC&IG, BARC and Principal, K C College, Mumbai for their encouragement and supports. This work is the part of the Ph.D. thesis of Mr. Vishal Sharma under University of Mumbai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Acharya.

Ethics declarations

Conflict of interest

The authors declare thet they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Acharya, R., Bagla, H.K. et al. Development and optimization of a simple internal beam current monitoring approach using 29Si(p,p′γ)29Si reaction in particle induced gamma-ray emission for compositional characterization of glass samples and application to automobile windshield glasses. J Radioanal Nucl Chem 331, 1769–1778 (2022). https://doi.org/10.1007/s10967-022-08221-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08221-4

Keywords

Navigation