Skip to main content
Log in

Degradation of polyimide films modified by carbon nanotubes under electron beam irradiation and tensile stress

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In order to meet the needs of spacecraft for high-performance materials, polyimide (PI)/carbon nanotubes (CNTs) composite films were prepared and their performance changes under the coupling effect of electron beam irradiation/tensile stress were studied. The results showed that the PI/CNTs composite films had excellent mechanical properties and radiation resistance, and can be used as a promising candidate material for space applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang MY, Niu HQ, Wu DZ (2018) Polyimide fibers with high strength and high modulus: preparation, structures, properties, and applications. Macromol Rapid Commun 39(20):1–14

    Google Scholar 

  2. Yu HB, Shi YK, Yuan B et al (2021) Recent developments of polyimide materials for lithium-ion battery separators. Ionics (kiel) 27:907–923

    CAS  Google Scholar 

  3. Ji DY, Li T, Hu WP et al (2019) Recent progress in aromatic polyimide dielectrics for organic electronic devices and circuits. Adv Mater 31(15):1806070

    Google Scholar 

  4. Liaw DJ, Wang KL, Huang YC et al (2012) Advanced polyimide materials: syntheses, physical properties and applications. Prog Polym Sci 37(7):907–974

    CAS  Google Scholar 

  5. Gouzman I, Grossman E, Verker R et al (2019) Advances in polyimide-based materials for space application. Adv Mater 31(18):e1807738

    PubMed  Google Scholar 

  6. Shimamura H, Nakamura T (2009) Mechanical properties degradation of polyimide films irradiated by atomic oxygen. Polym Degrad Stab 94(9):1389–1396

    CAS  Google Scholar 

  7. Nieminen P, Mohammadzadeh A, Daly E et al (2003) Space radiation environment and its effects on satellite navigation systems. Springer, Dordrecht

    Google Scholar 

  8. Vulpetti G, Apponi D, Zeng X et al (2020). Adv Space Res. https://doi.org/10.1016/j.asr.2020.07.016

    Article  Google Scholar 

  9. Cai JG, Ren Z, Ding YF et al (2017). Aerosp Sci Technol. https://doi.org/10.1016/j.ast.2017.04.002

    Article  Google Scholar 

  10. Yonetoku D, Murakami T, Gunji S et al (2011) Gamma-ray burst polarimeter (GAP) aboard the small solar power sail demonstrator IKAROS. Publ Astron Soc Jpn 63:625–638

    Google Scholar 

  11. Angirasa D, Ayyaswamy PS (2015) Review of evaluation methodologies for satellite exterior materials in low earth orbit. J Spacecr Rockets 51(3):750–761

    Google Scholar 

  12. Kiefer RL, Gabler WJ, Hovey MT et al (1993) (2011) The effects of exposure in space on two high-performance polymers. Radiat Phys Chem Oxf Engl 80(2):126–129

    Google Scholar 

  13. Li NB, Wang M, Guo LX et al (2018) Ionic liquid embedded polyimides with ultra-foldability, ultra-flexibility, ultra-processability and superior optical transparency. Polymer (Guildf) 153:538–547

    CAS  Google Scholar 

  14. Lv M, Zheng F, Wang QH et al (2015) Friction and wear behaviors of carbon and aramid fibers reinforced polyimide composites in simulated space environment. Tribol Int 92:246–254

    CAS  Google Scholar 

  15. Verker R, Grossman E, Gouzman I et al (2007) Residual stress effect on degradation of polyimide under simulated hypervelocity space debris and atomic oxygen. Polymer (Guildf) 48(1):19–24

    CAS  Google Scholar 

  16. Rusu RD, Constantin CP, Drobota M et al (2020) Polyimide films tailored by UV irradiation: surface evaluation and structure-properties relationship. Polym Degrad Stab 177:109182

    CAS  Google Scholar 

  17. Artiaga R, Chipara M, Stephens CP et al (2005) Dynamical mechanical analysis of proton beam irradiated polyimide. Nucl Instrum Methods Phys Res B 236(1–4):432–436

    CAS  Google Scholar 

  18. Miyazaki E, Tagawa M, Yokota K et al (2010) Investigation into tolerance of polysiloxane-block-polyimide film against atomic oxygen. Acta Astronaut 66(5–6):922–928

    CAS  Google Scholar 

  19. Plis EA, Engelhart DP, Cooper R et al (2018) Effect of environment on charge transport properties of polyimide films damaged by high-energy electron radiation. J Vac Sci Technol B Microelectron Nanometer Struct Process Meas Phenom 36(5):052906(1–6)

    Google Scholar 

  20. Sergeev PB, Morozov NV (2019) Properties of polyimide film after electron beam irradiation with a dose of 1 GGy. Opt Spectrosc 126(3):200–204

    CAS  Google Scholar 

  21. Shimamura H, Yamagata I (2009) Degradation of mechanical properties of polyimide film exposed to space environment. J Spacecr Rockets 46(1):15–21

    CAS  Google Scholar 

  22. Verker R, Grossman E, Gouzman I et al (2008) POSS-polyimide nanocomposite films: simulated hypervelocity space debris and atomic oxygen effects. High Perform Polym 20(4–5):475–491

    CAS  Google Scholar 

  23. Verker R, Atar N, Quero F et al (2013) Tensile stress effect on the macromolecular orientation and erosion mechanism of an atomic oxygen irradiated polyimide. Polym Degrad Stab 98(5):997–1005

    CAS  Google Scholar 

  24. Shimamura H, Nakamura T (2010) Investigation of degradation mechanisms in mechanical properties of polyimide films exposed to a low earth orbit environment. Polym Degrad Stab 95(1):21–33

    CAS  Google Scholar 

  25. Dong SS, Shao WZ, Yang L et al (2018) Microstructure evolution of polyimide films induced by electron beam irradiation-load coupling treatment. Polym Degrad Stab 155:230–237

    CAS  Google Scholar 

  26. Kausar A, Anwar S (2017) Graphite filler-based nanocomposites with thermoplastic polymers: a review. Polym Plast Technol Eng 57(6):565–580

    Google Scholar 

  27. Loeblein M, Bolker A, Tsang SH et al (2015) Flexible electronics: 3D graphene-infused polyimide with enhanced electrothermal performance for long-term flexible space applications. Small 11(48):6425–6434

    CAS  PubMed  Google Scholar 

  28. Ogbonna VE, Popoola PI, Popoola OM et al (2020). J Thermoplast Compos. https://doi.org/10.1007/s00289-020-03487-8

    Article  Google Scholar 

  29. Ni HJ, Liu JG, Wang ZH et al (2015) A review on colorless and optically transparent polyimide films: chemistry, process and engineering applications. J Ind Eng Chem 28:16–27

    CAS  Google Scholar 

  30. Kong DY, Li J, Guo AR et al (2020) High temperature electromagnetic shielding shape memory polymer composite. Chem Eng J 408:127365

    Google Scholar 

  31. Yokota K, Abe S, Tagawa M et al (2009) Degradation property of commercially available Si-containing polyimide in simulated atomic oxygen environments for low earth orbit. High Perform Polym 22(2):237–251

    Google Scholar 

  32. Atar N, Grossman E, Gouzman I et al (2015) Atomic-oxygen-durable and electrically-conductive CNT-POSS-polyimide flexible films for space applications. ACS Appl Mater Interfaces 7(22):12047–12056

    CAS  PubMed  Google Scholar 

  33. Roy S, Petrova RS, Mitra S (2018) Effect of carbon nanotube (CNT) functionalization in epoxy-CNT composites. Nanotechnol Rev 7(6):475–485

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sun GH, Zhang S, Yang ZD et al (2020) Fabrication and mechanical, electrical properties study of isocyanate-based polyimide films modified by reduced graphene oxide. Prog Org Coat 143:105611

    CAS  Google Scholar 

  35. Stankovich S, Dikin DA, Dommett GHB et al (2006) Graphene-based composite materials. Nature 442(7100):282–286

    CAS  PubMed  Google Scholar 

  36. Xin YS, Li TS, Xu FL et al (2017) Multidimensional structure and enhancement performance of modified graphene/carbon nanotube assemblies in tribological properties of polyimide nanocomposites. RSC Adv 7(34):20742–20753

    CAS  Google Scholar 

  37. Stankovich S, Piner RD, Nguyen SBT et al (2006) Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon N Y 44(15):3342–3347

    CAS  Google Scholar 

  38. Wang J, Zhao X, Berda EB et al (2016) The elastic properties and piezochromism of polyimide films under high pressure. Polymer (Guildf) 90:1–8

    CAS  Google Scholar 

  39. Jiang Q, Tallury SS, Qiu YP et al (2020) Interfacial characteristics of a carbon nanotube-polyimide nanocomposite by molecular dynamics simulation. Nanotechnol Rev 9(1):136–145

    Google Scholar 

  40. Vanherck K, Koeckelberghs G, Vankelecom IFJ (2013) Crosslinking polyimides for membrane applications: a review. Prog Polym Sci 38(6):874–896

    CAS  Google Scholar 

  41. Alegaonkar PS, Bhoraskar VN (2004) Effect of MeV electron irradiation on the free volume of polyimide. Radiat Eff Defect Solids 159(8–9):511–516

    CAS  Google Scholar 

  42. Dintcheva NT, Arrigo R, Teresi R et al (2016) Tunable radical scavenging activity of carbon nanotubes through sonication. Carbon N Y 107:240–247

    CAS  Google Scholar 

  43. Galano A (2010) Carbon nanotubes: promising agents against free radicals. Nanoscale 2(3):373–380

    CAS  PubMed  Google Scholar 

  44. Zhang BD, Clausi M, Heck B et al (2021) Changes in surface free energy and surface conductivity of carbon nanotube/polyimide nanocomposite films induced by UV irradiation. ACS Appl Mater Interfaces 13(20):24218–24227

    CAS  PubMed  Google Scholar 

  45. Liu BX, Pei XQ, Wang QH et al (2011) Effects of proton and electron irradiation on the structural and tribological properties of MoS2/polyimide. Appl Surf Sci 258(3):1097–1102

    CAS  Google Scholar 

  46. Ektessabi AM, Hakamata S (2000) XPS study of ion beam modified polyimide films. Thin Solid Films 377:621–625

    Google Scholar 

  47. Novikov L, Voronina EN, Chernik VN et al (2017) Combined impact of 500 keV protons and oxygen plasma on polyimide films. Nucl Instrum Methods Phys Res B 410:60–67

    CAS  Google Scholar 

  48. Du QF, Chen T, Liu JG et al (2018) Surface microstructure and chemistry of polyimide by single pulse ablation of picosecond laser. Appl Surf Sci 434:588–595

    CAS  Google Scholar 

  49. Long Y, Wu YY, Sun CY et al (2012) Investigation on the radiation induced conductivity of space-applied polyimide under cyclic electron irradiation. Nucl Instrum Methods Phys Res B 291:17–21

    Google Scholar 

  50. Ju DD, Sun CY, Wang H et al (2020) Synergistic effect of proton irradiation and strain on the mechanical properties of polyimide fibers. Rsc Adv 10(65):39572–39579

    CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by National Natural Science Foundation of China (11775115, 11575086), Aeronautical Science Foundation (2018ZF52070), Equipment Pre-Research Foundation of Key Laboratory (6142207190209) and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuquan Chang or Haiqian Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3196 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xian, L., Wang, K., Huang, Y. et al. Degradation of polyimide films modified by carbon nanotubes under electron beam irradiation and tensile stress. J Radioanal Nucl Chem 331, 1741–1750 (2022). https://doi.org/10.1007/s10967-022-08218-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08218-z

Keywords

Navigation