Skip to main content
Log in

Characterization and thermal expansion of Th–10Zr alloy

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Thorium–zirconium (Th–Zr) alloys have been less extensively studied as compared to uranium–zirconium (U–Zr) alloys and hence, literature available on the Th–Zr system is scarce. In the Th–Zr binary phase diagram, thorium–rich solvus line is shown by a dotted line till date. In this study, Th–10 wt%Zr alloy was synthesised by arc melting, the as-cast alloy was annealed at 1100 °C and quenched. X-ray diffraction pattern of the Th–10Zr showed peaks corresponding to α-thorium. The microstructure revealed a lamellar structure. The elastic properties showed a substantial increase in mechanical strength of the alloy. Coefficient of thermal expansion was determined using a dilatometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ramanna R, Lee SM (1986) The thorium cycle for fast breeder reactors. Pramana J Phys 27(1 & 2):129–137

    Article  CAS  Google Scholar 

  2. Rodriguez P, Sundaram CV (1981) Nuclear and materials aspects of the thorium fuel cycle. J Nucl Mater 100:227–249

    Article  CAS  Google Scholar 

  3. Vijayan PK, Shivkumar V, Basu S, Sinha RK (2017) Role of thorium in the India nuclear power programme. Prog Nucl Energ 101:43–52

    Article  CAS  Google Scholar 

  4. Kakodkar A (2019) Harnessing thorium for clean energy future: challenges ahead, energy for the future select papers from ThEC15. Springer, Singapore

    Google Scholar 

  5. Nayak K, Kumar A, Dhami PS, Asnani CK, Singh P (2019) Thorium technology development in an Indian perspective, energy for the future select papers from ThEC15. Springer, Singapore

    Book  Google Scholar 

  6. Banerjee S, Gupta HP (2019) Nuclear power from thorium: some frequently asked questions, energy for the future select papers from ThEC15. Springer, Singapore

    Google Scholar 

  7. Anantharaman K, Vasudevarao PR (2011) In: Krivit SB (ed) Global perspective on thorium fuel, nuclear energy encyclopaedia: science, technology, and applications, 1st edn. Wiley, New York

  8. Das D (2013) Thoria-based nuclear fuels, green energy and technology. Springer, London. https://doi.org/10.1007/978-4-4471-5589-8_1

    Article  Google Scholar 

  9. Galahom AA (2017) Minimization of the fission product waste by using thorium based fuel instead of uranium dioxide. Nucl Eng Des 314:165–172

    Article  CAS  Google Scholar 

  10. Jain D, Sudarsan V, Tyagi AK (2013) Thorium based metallic alloys as nuclear fuels: present status, potential advantages and challenges. SMC Bull 4(1):27–40

    Google Scholar 

  11. Chetal SC, Chellapandi P, Puthiyavinayagam P, Raghupathy S, Balasubramaniyan V, Selvaraj P, Mohanakrishnan P, Raj B (2011) Current status of fast reactors and future plans in India. Energy Procedia 7:64–73

    Article  Google Scholar 

  12. Devan K, Bachchan A, Riyas A, Sathiyasheela T, Mohanakrishnan P, Chetal SC (2011) Physics design of experimental metal fuelled fast reactor cores for full scaledemonstration. Nucl Eng Des 241:3058–3067

    Article  CAS  Google Scholar 

  13. Kutty TRG, Ravi K, Kaity S, Swarnkar SK, Kumar A (2012) Effect of temperature on hardness of binary U–15%Pu alloy and T91 cladding. J Nucl Mater 429(1–3):341–345

    Article  CAS  Google Scholar 

  14. Ogata T (2012) In: Konings RJM (ed) Comprehensive nuclear materials volume 3: advanced fuels/fuel cladding/nuclear fuel performance modelling and simulation. Elsevier, Oxford

  15. Crawford DC, Porter DL, Hayes SL (2007) Fuels for sodium-cooled fast reactors: US perspective. J Nucl Mater 371:202–231

    Article  CAS  Google Scholar 

  16. Carmack WJ, Porter DL, Chang YI, Hayes SL, Meyer MK, Burkes DE, Lee CB, Mizuno T, Delage F, Somers J (2009) Metallic fuels for advanced reactors. J Nucl Mater 392:139–150

    Article  CAS  Google Scholar 

  17. Mariania RD, Porter DL, Hayes SL, Kennedy JR (2012) Metallic fuels: the ebr-ii legacy and recent advances. Procedia Chem 7:513–520

    Article  Google Scholar 

  18. Hofman GL, Walters LC, Bauer TH (1997) Metallic fast reactor fuels. Prog Nucl Energ 31(1/2):83–110

    Article  CAS  Google Scholar 

  19. Was GS, Petti D, Ukai S, Zinkle S (2019) Materials for future nuclear energy systems. J Nucl Mater 527:151837

    Article  CAS  Google Scholar 

  20. Kittel JH, Frost BRT, Mustelier JP, Bagley KQ, Crittenden GC, Dievoet JV (1993) History of fast reactor fuel development. J Nucl Mater 204:1–13

    Article  CAS  Google Scholar 

  21. Murray JR (1960) The constitution of thorium–zirconium alloys containing more than 15% zirconium and the effect of some third elements on the stability of the body-entered cubic phase in these alloys. J Less Comm Metal 2:1–10

    Article  CAS  Google Scholar 

  22. Evans DS, Raynor GV (1961) The solubility of zirconium in α-thorium. J Nucl Mater 4(1):66–69

    Article  CAS  Google Scholar 

  23. Johnson RH, Honeycombe RWK (1961) The solid solubility of zirconium in α-thorium. J Nucl Mater 4(1):59–65

    Article  CAS  Google Scholar 

  24. Carlson ON, Stevens ER (1971) Thorium phase diagrams. Nucl Eng Des 17:439–446

    Article  CAS  Google Scholar 

  25. Massalski TB (1986) Binary alloy phase diagrams, vol 2. ASM, Ohio

    Google Scholar 

  26. Bannister GH (1964) The body-centred-cubic to face-centred-cubic phase transformation inthorium and some thorium-rich alloys. J Nucl Mater 12(1):16–23

    Article  CAS  Google Scholar 

  27. Hanson G, Rivlin VG, Hatt BA (1964) The β-phase transformation of some zirconium–thorium alloys. J Nucl Mater 12(1):83–93

    Article  CAS  Google Scholar 

  28. Bannister GH, Burnett RC, Murray JR (1960) Ageing and hot hardness characteristics of certain thorium alloys. J Nucl Mater 2(1):51–61

    Article  CAS  Google Scholar 

  29. Johnson RH, Honeycombe RWK (1961) The structure and heat treatment of some thorium–zirconium alloys. J Nucl Mater 4(3):995–310

    Article  Google Scholar 

  30. Peterson DT, Zabel DC (1974) The effect of zirconium on the strength of thorium. Met Trans 5:1974–1173

    Google Scholar 

  31. Li ZS, Liu XJ, Wang CP (2009) Thermodynamic modelling of the Th–U, Th–Zr and Th–U–Zr systems. J Alloys Compd 476:193–198

    Article  CAS  Google Scholar 

  32. ASTM: E 384-99 (2000) Standard test method for microindentation hardness of materials, ASTM, PA

  33. ASTM: E494-20, Standard practice for measuring ultrasonic velocity in materials by comparative pulse-echo method. ASTM, US

  34. Papadakis EP (1997) Ultrasonic wave measurements of elastic moduli E, G, and µ for product development and design calculations. Quality Systems Concepts Inc, New Holland

    Google Scholar 

  35. ASTM Designation: E228-11 (2011) Standard thermal expansion of solid materials with a push rod dilatometer. ASTM, US

  36. ASTM Designation E3-11(2017) Standard guide for preparation of metallographic specimens. ASTM, US

  37. PDF pattern-04-008-1382, ICDD-2019

  38. PDF pattern-01-089-4788, ICDD-2019

  39. PDF pattern-00-004-0556, ICDD-2019

  40. http://www.matweb.com/search/DataSheet.aspx?MatGUID=c29823b5976f4c319cabe0ae8c4075c3&ckck=1. Accessed 14 Oct 2021

  41. http://www.matweb.com/search/DataSheet.aspx?MatGUID=6e8936b3ad994f13bfb29923cc1506a9. Accessed 14 Oct 2021

  42. Northwood O, Lim DT (1979) Phase transformations in zirconium and its alloys. Can Met Q 18:441–467

    Article  CAS  Google Scholar 

  43. DE Janney, SL Hayes (2018) Experimentally known properties of U–10Zr alloys: a critical review, INL, Idaho Falls, ID 83415, U.S. Department of Energy, INL/JOU-17-44020-Revisions

Download references

Acknowledgements

The authors wish to express sincere thanks and gratitude to Dr. P.P. Nanekar, Head, PIED, for his constant support. The authors also thank Dr. P.K. Pujari, Group Director RC&I group, and Shri V. Bhasin, Group Director NFG group for their constant encouragement during the course of this work. The authors would like to express their sincere thanks to Dr. S.B. Roy, Head, UED for providing the raw material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparna Banerjee.

Ethics declarations

Conflict of interest

There are no interests to declare, the research did not receive any specific grant from funding agencies in the public or not for profit services.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, U., Kaity, S., Arya, A. et al. Characterization and thermal expansion of Th–10Zr alloy. J Radioanal Nucl Chem 331, 1619–1627 (2022). https://doi.org/10.1007/s10967-022-08217-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08217-0

Keywords

Navigation