Skip to main content
Log in

Direct uranium enrichment assay in gaseous uranium hexafluoride with laser induced breakdown spectroscopy

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A set of eleven U atomic emission lines, between 421.099 and 421.460 nm, were characterized for direct enrichment assay of gaseous UF6 samples with laser induced breakdown spectroscopy (LIBS). Several iterative, multivariate nonlinear spectral-fitting algorithms were evaluated for their efficacies to extract the enrichment information from the measured LIBS spectra. Wavelength-dependent weight factors, which take into consideration of the spectral-line position in the fitting model, the determined isotopic ratio, and the isotopic shift of the emission line, are essential for the spectral-fitting model to function adequately. The analytical accuracies and precision were typically within 0.5% in absolute [235U/(235U + 238U)] ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Meija J, Coplen TB, Berglund M, Brand WA, Bièvre PD, Gröning M, Holden NE, Irrgeher J, Loss RD, Walczyk T, Prohaska T (2016) Isotopic compositions of the elements 2013 (IUPAC technical report). Pure Appl Chem 88:293–306

    Article  CAS  Google Scholar 

  2. Morse EC (2016) The nuclear fuel cycle. Analytical methods for nonproliferation. Springer, Cham, Switzerland, pp 71–92

    Chapter  Google Scholar 

  3. Kessler G (2012) Uranium enrichment. Sustainable and safe nuclear fission energy: technology and safety of fast and thermal nuclear reactors. Springer, Berlin, Germany, pp 59–71

    Chapter  Google Scholar 

  4. Groult H, Lantelme F, Salanne M, Simon C, Belhomme C, Morel B, Nicolas F (2007) Role of elemental fluorine in nuclear field. J Fluorine Chem 128:285–295

    Article  CAS  Google Scholar 

  5. Chan GCY, Valentine JD, Russo RE (2017) Towards novel field-deployable instrumentation for UF6 enrichment assay – an overview of existing and emerging technologies. ESARDA Bull 54:31–43

    Google Scholar 

  6. Strange Fessler KA, O'Rourke P, DeRoller N, Simmons D, Serkiz S (2020) Infrared spectroscopic method for uranium isotopic analysis. Proc SPIE 11416, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XXI 11416:114160R

  7. Fessler KAS, O’Rourke PE, DeRoller NF, Simmons D, Serkiz SM (2021) Use of an infrared spectroscopic method for isotopic analysis of gaseous uranium hexafluoride. In: Srivatsan TS, Harrigan WC, Hunyadi Murph S (eds) Metal-matrix composites – advances in analysis, measurement, and observations. Springer, Cham, Switzerland, pp 183–199

    Chapter  Google Scholar 

  8. Nabiev SS, Semenov VM, Stavrovskii DB, Men’shikov PL, Men’shikov LI, Grigor’ev GY (2017) Measurements of the isotopic composition of UF6 according to the fine structure of the IR absorption spectrum in the v1 + v3 band. Russ J Phys Chem B 11:61–76

    Article  CAS  Google Scholar 

  9. Golubkov GV, Grigoriev GY, Nabiev SS, Palkina LA, Golubkov MG (2018) Use of IR absorption laser spectroscopy at nuclear fuel cycle plants: problems and prospects (review). Russ J Phys Chem B 12:804–829

    Article  CAS  Google Scholar 

  10. Lebedev V, Bartlett JH, Castro A (2018) Isotope-resolved atomic beam laser spectroscopy of natural uranium. J Anal At Spectrom 33:1862–1866

    Article  CAS  Google Scholar 

  11. Bartlett JH, Castro A (2019) Isotopic spectroscopy of uranium atomic beams produced by thermal reduction of uranium compounds. Spectrochim Acta Part B 155:61–66

    Article  CAS  Google Scholar 

  12. Song J, Chan GCY, Mao X, Woodward JD, Smithwick RW, Schaaff TG, Stowe AC, Harris CD, Zheng R, Zorba V, Russo RE (2018) Multivariate nonlinear spectral fitting for uranium isotopic analysis with laser-induced breakdown spectroscopy. Spectrochim Acta Part B 150:67–76

    Article  CAS  Google Scholar 

  13. Chan GCY, Martin LR, Trowbridge LD, Zhu ZL, Mao XL, Russo RE (2021) Analytical characterization of laser induced plasmas towards uranium isotopic analysis in gaseous uranium hexafluoride. Spectrochim Acta Part B 176:106036

    Article  CAS  Google Scholar 

  14. Quentmeier A, Bolshov M, Niemax K (2001) Measurement of uranium isotope ratios in solid samples using laser ablation and diode laser-atomic absorption spectrometry. Spectrochim Acta Part B 56:45–55

    Article  Google Scholar 

  15. Bushaw BA, Anheier NC Jr (2009) Isotope ratio analysis on micron-sized particles in complex matrices by laser ablation-absorption ratio spectrometry. Spectrochim Acta Part B 64:1259–1265

    Article  Google Scholar 

  16. Miyabe M, Oba M, Iimura H, Akaoka K, Maruyama Y, Ohba H, Tampo M, Wakaida I (2013) Laser ablation absorption spectroscopy for remote analysis of uranium. Hyperfine Interact 216:71–77

    Article  CAS  Google Scholar 

  17. Lebedev V, Bartlett JH, Malyzhenkov A, Castro A (2017) Micro-channel array crucible for isotope-resolved laser spectroscopy of high-temperature atomic beams. Rev Sci Instrum 88:126101

    Article  PubMed  Google Scholar 

  18. Senesi GS, Harmon RS, Hark RR (2021) Field-portable and handheld laser-induced breakdown spectroscopy: historical review, current status and future prospects. Spectrochim Acta Part B 175:106013

    Article  CAS  Google Scholar 

  19. Rakovský J, Čermák P, Musset O, Veis P (2014) A review of the development of portable laser induced breakdown spectroscopy and its applications. Spectrochim Acta Part B 101:269–287

    Article  Google Scholar 

  20. Harilal SS, Brumfield BE, LaHaye NL, Hartig KC, Phillips MC (2018) Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis. Appl Phys Rev 5:021301

    Article  Google Scholar 

  21. Wu J, Qiu Y, Li X, Yu H, Zhang Z, Qiu A (2020) Progress of laser-induced breakdown spectroscopy in nuclear industry applications. J Phys D: Appl Phys 53:023001

    Article  CAS  Google Scholar 

  22. Becker-Ross H, Florek SV (1997) Echelle spectrometers and charge-coupled devices. Spectrochim Acta Part B 52:1367–1375

    Article  Google Scholar 

  23. Bibinov N, Halfmann H, Awakowicz P, Wiesemann K (2007) Relative and absolute intensity calibrations of a modern broadband echelle spectrometer. Meas Sci Technol 18:1327–1337

    Article  CAS  Google Scholar 

  24. Taleb A, Shen C, Mory D, Cieślik K, Merk S, Aziz MR, Caricato AP, Gerhard C, Pelascini F, Hermann J (2021) Echelle spectrometer calibration by means of laser plasma. Spectrochim Acta Part B 178:106144

    Article  CAS  Google Scholar 

  25. Oliver GD, Milton HT, Grisard JW (1953) The vapor pressure and critical constants of uranium hexafluoride. J Am Chem Soc 75:2827–2829

    Article  CAS  Google Scholar 

  26. Peruski KM, Davis TA, Chan GCY, Mao XL, Trowbridge LD, Martin LR (2022) Cell design for laser-induced breakdown spectroscopy measurments on reactive gas samples. J Fluorine Chem 255–256:109951

  27. Harrison GR, Loewen EG, Wiley RS (1976) Echelle gratings: Their testing and improvement. Appl Opt 15:971–976

    Article  CAS  PubMed  Google Scholar 

  28. Saunderson JL (1960) A method of uranium isotope analysis by direct reading emission spectroscopy. Talanta 6:63–70

    Article  CAS  Google Scholar 

  29. Rossi G, Mol M (1969) Isotopic analysis of uranium by an optical spectral method—III: Determination of U235/U238 ratios with a hollow-cathode source and a direct-reading attachment. Spectrochim Acta Part B 24:389–398

    Article  CAS  Google Scholar 

  30. Hainski Z, Rossi G (1965) Isotopic analysis of uranium by an optical spectral method – I. Determination of U235 in natural and depleted uranium with DC arc excitation and photographic recording. Energia Nucleare 12:306–309

    CAS  Google Scholar 

  31. Leys JA, Perkins RE (1966) Uranium isotope analysis by optical emission spectrometry. Anal Chem 38:1099–1101

    Article  CAS  Google Scholar 

  32. El Sherbini AM, El Sherbini TM, Hegazy H, Cristoforetti G, Legnaioli S, Palleschi V, Pardini L, Salvetti A, Tognoni E (2005) Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements. Spectrochim Acta Part B 60:1573–1579

    Article  Google Scholar 

  33. Cristoforetti G, Tognoni E (2013) Calculation of elemental columnar density from self-absorbed lines in laser-induced breakdown spectroscopy: a resource for quantitative analysis. Spectrochim Acta Part B 79–80:63–71

    Article  Google Scholar 

  34. Takahashi T, Thornton B (2017) Quantitative methods for compensation of matrix effects and self-absorption in laser induced breakdown spectroscopy signals of solids. Spectrochim Acta Part B 138:31–42

    Article  CAS  Google Scholar 

  35. Rezaei F, Cristoforetti G, Tognoni E, Legnaioli S, Palleschi V, Safi A (2020) A review of the current analytical approaches for evaluating, compensating and exploiting self-absorption in laser induced breakdown spectroscopy. Spectrochim Acta Part B 169:105878

    Article  CAS  Google Scholar 

  36. International Atomic Energy Agency (IAEA) (2010) International target values 2010 for measurement uncertainties in safeguarding nuclear materials (STR-368), IAEA

  37. Palmer BA, Engleman RJ, Keller RA (1980) An atlas of uranium emission intensities in a hollow-cathode discharge (LA-8251-MS), Los Alamos National Laboratory

  38. Payling R, Larkins P (2000) Optical emission lines of the elements. Wiley, UK

    Google Scholar 

  39. Akaoka K, Oba M, Miyabe M, Otobe H, Wakaida I (2015) Measurement of uranium spectrum using laser induced breakdown spectroscopy – high resolution spectroscopy (350–470 nm) (JAEA-Research 2015–012), Japan Atomic Energy Agency

  40. Akaoka K, Oba M, Miyabe M, Otobe H, Wakaida I (2016) Measurement of uranium spectrum using laser induced breakdown spectroscopy – high resolution spectroscopy (470–670 nm) (JAEA-Research 2016–005), Japan Atomic Energy Agency

  41. Richards EWT, Crew MD (1959) The uranium spectrum between 3500 Å and 5500 Å with associated isotopic shifts (AERE-R-2941), United Kingdom Atomic Energy Authority

  42. Smith DD (1952) Isotope spectrum shift data on uranium spectrum lines (ORNL-1412), Oak Ridge National Laboratory

  43. Blaise J, Radziemski LJ (1976) Energy-levels of neutral atomic uranium (U I). J Opt Soc Am 66:644–659

    Article  CAS  Google Scholar 

  44. Blaise J, Wyart JF, Verges J, Engleman R, Palmer BA, Radziemski LJ (1994) Energy-levels and isotope shifts for singly ionized uranium (U II). J Opt Soc Am B 11:1897–1929

    Article  CAS  Google Scholar 

  45. Hou JJ, Zhang L, Zhao Y, Ma WG, Dong L, Yin WB, Xiao LT, Jia ST (2019) Resonance/non-resonance doublet-based self-absorption-free LIBS for quantitative analysis with a wide measurement range. Opt Express 27:3409–3421

    Article  CAS  PubMed  Google Scholar 

  46. Subramanian J, Simon R (2013) Overfitting in prediction models – is it a problem only in high dimensions? Contemp Clin Trials 36:636–641

    Article  PubMed  Google Scholar 

  47. Lever J, Krzywinski M, Altman N (2016) Model selection and overfitting. Nat Meth 13:703–704

    Article  CAS  Google Scholar 

  48. Lefebvre-Brion H, Field RW (2004) Chapter 4 - methods of deperturbation. In: Lefebvre-Brion H, Field RW (eds) The spectra and dynamics of diatomic molecules. Academic Press, San Diego, pp 233–274

    Chapter  Google Scholar 

  49. Motulsky HJ, Brown RE (2006) Detecting outliers when fitting data with nonlinear regression - a new method based on robust nonlinear regression and the false discovery rate. BMC Bioinf 7:123–123

    Article  Google Scholar 

  50. Minguzzi P (2001) Some practical tools for everyday least squares. J Mol Spectrosc 209:169–177

    Article  CAS  Google Scholar 

  51. Reed BC (2015) Straight-line fits with uncertainties in both coordinates: from Gauss to spreadsheets. Phys Scr 90:128001

    Article  Google Scholar 

  52. Taylor PDP, Schutyser P (1986) Weighted linear regression applied in inductively coupled plasma-atomic emission spectrometry—a review of the statistical considerations involved. Spectrochim Acta Part B 41:1055–1061

    Article  Google Scholar 

  53. Garden JS, Mitchell DG, Mills WN (1980) Nonconstant variance regression techniques for calibration-curve-based analysis. Anal Chem 52:2310–2315

    Article  CAS  Google Scholar 

  54. Almeida AM, Castel-Branco MM, Falcão AC (2002) Linear regression for calibration lines revisited: weighting schemes for bioanalytical methods. J Chromatogr B 774:215–222

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nuclear Security Administration’s Defense Nuclear Nonproliferation Office of Research and Development of the U.S. Department of Energy under contract numbers DE-AC02-05CH11231 at the Lawrence Berkeley National Laboratory and DE-AC05-00OR22725 at the Oak Ridge National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George C.-Y. Chan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, G.CY., Mao, X., Martin, L.R. et al. Direct uranium enrichment assay in gaseous uranium hexafluoride with laser induced breakdown spectroscopy. J Radioanal Nucl Chem 331, 1409–1421 (2022). https://doi.org/10.1007/s10967-022-08215-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08215-2

Keywords

Navigation