Skip to main content
Log in

Luminescence and compositional studies for the identification of “fire-setting” features at prehistoric mine La Turquesa (Catalonia, Spain)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Modern mining activities often leads to destruction of archaeological records, making difficult to date the contexts and tools. In this work, a prehistoric mine with “fire-setting” techniques evidence was used to demonstrate the relevance of luminescence protocols to identify and date ancient mining activities. Chemical and mineralogical studies complemented the dosimetric ones by means of luminescence protocols. One of the samples shows lower absorbed dose suggesting heating procedures, like “fire-setting” and its luminescence age, determined by SAROSL, points to copper exploitation during the Middle/Late Bronze Age at La Turquesa mine, in accordance with archaeological records.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Craddock PT (1992) A short history of firesetting. Endeavour 16:145–150. https://doi.org/10.1016/0160-9327(92)90074-Y

    Article  Google Scholar 

  2. Weisgerber G, Willies L (2000) The use of fire in prehistoric and ancient mining-firesetting in La pyrotechnologie à ses débuts. Evolution des premières industries faisant usage du feu. 131–149. Paléorient 26:131–149

    Article  Google Scholar 

  3. Ambert P (2002) Utilisation préhistorique de la technique minière d’abattage au feu dans le district cuprifère de Cabrières (Hérault). C R Palevol 1:711–716

    Article  Google Scholar 

  4. Odriozola CP, Villalobos García R, Burbidge CI et al (2016) Distribution and chronological framework for Iberian variscite mining and consumption at Pico Centeno, Encinasola, Spain. Quat Res (United States) 85:159–176. https://doi.org/10.1016/j.yqres.2015.11.010

    Article  Google Scholar 

  5. Pichler T, Nicolussi K, Goldenberg G et al (2013) Charcoal from a prehistoric copper mine in the Austrian Alps: dendrochronological and dendrological data, demand for wood and forest utilisation. J Archaeol Sci 40:992–1002. https://doi.org/10.1016/j.jas.2012.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Py V, Durand A, Ancel B (2013) Anthracological analysis of fuel wood used for firesetting in medieval metallic mines of the Faravel district (southern French Alps). J Archaeol Sci 40:3878–3889. https://doi.org/10.1016/j.jas.2013.05.006

    Article  Google Scholar 

  7. Shindo L, Py-Saragaglia V, Ancel B et al (2019) New insights on the chronology of medieval mining activity in the small polymetallic district of Faravel (Massif des Écrins, Southern French Alps) derived from dendrochronological and archaeological approaches. J Archaeol Sci Reports 23:451–463. https://doi.org/10.1016/J.JASREP.2018.11.008

    Article  Google Scholar 

  8. Py V, Ancel B (2006) Archaeological experiments in fire-setting: protocol, fuel and anthracological approach. Charcoal analysis: new analytical tools and methods for archaeology. BAR Int Series S 1483:71–82

    Google Scholar 

  9. Ancel B, Py V (2008) L’abattage par le feu: une technique minière ancestrale. Archéopages 22:34–41

    Google Scholar 

  10. Py-Saragaglia V, Cunill Artigas R, Métailié JP et al (2017) Late Holocene history of woodland dynamics and wood use in an ancient mining area of the Pyrenees (Ariège, France). Quat Int 458:141–157. https://doi.org/10.1016/j.quaint.2017.01.012

    Article  Google Scholar 

  11. De Jesus P, Dardeniz G (2015) Archaeological and geological concepts on the topic of ancient mining. Bull Miner Res Explor 151:231–246. https://doi.org/10.19111/bmre.54281

    Article  Google Scholar 

  12. Poggiali F, Buonicontri MP, D’Auria A et al (2017) Wood selection for firesetting: First data from the Neolithic cinnabar mine of Spacasso (South Tuscany, Italy). Quat Int 458:134–140. https://doi.org/10.1016/j.quaint.2017.06.028

    Article  Google Scholar 

  13. Stöllner TR (2014) Methods of mining archaeology (Montanarchäologie). Archaeometall Glob Perspect. https://doi.org/10.1007/978-1-4614-9017-3_7

    Article  Google Scholar 

  14. Castaing J, Mille B, Zink A et al (2005) L’abattage préhistorique au feu dans le district minier de Cabrieres (Hérault): évidences par thermoluminescence (TL). In La premiere métallurgie en France et dans les pays limitrophes. Mémoire XXXVII la Société Préhistorique Française 53–62:53–62

    Google Scholar 

  15. Rapp G, Balescu S, Lamothe M (1999) The identification of granitic fire-cracked rocks using luminescence of Alkali feldspars. Am Antiq 64:71–78. https://doi.org/10.2307/2694346

    Article  Google Scholar 

  16. Eskola KO, Okkonen J, Jungner H (2003) Luminescence dating of a coastal stone age dwelling place in Northern Finland. Quater Sci Rev 22(10–13):1287–1290

    Article  Google Scholar 

  17. Armitage SJ, King GE (2013) Optically stimulated luminescence dating of hearths from the Fazzan Basin, Libya: a tool for determining the timing and pattern of Holocene occupation of the Sahara. Quat Geochronol 15:88–97. https://doi.org/10.1016/J.QUAGEO.2012.10.002

    Article  Google Scholar 

  18. Richter D, Angelucci DE, Dias MI et al (2014) Heated flint TL-dating for Gruta da Oliveira (Portugal): dosimetric challenges and comparison of chronometric data. J Archaeol Sci 41:705–715. https://doi.org/10.1016/j.jas.2013.09.021

    Article  Google Scholar 

  19. Burbidge CI, Trindade MJ, Dias MI et al (2014) Luminescence dating and associated analyses in transition landscapes of the Alto Ribatejo, Central Portugal. Quat Geochronol 20:65–77. https://doi.org/10.1016/j.quageo.2013.11.002

    Article  Google Scholar 

  20. Sanjurjo-Sánchez J, Gomez-Heras M, Fort R et al (2016) Dating fires and estimating the temperature attained on stone surfaces. The case of Ciudad de Vascos (Spain). Microchem J 127:247–255. https://doi.org/10.1016/J.MICROC.2016.03.017

    Article  Google Scholar 

  21. Rafel Fontanals N, Hunt MA, Soriano I, Delgado-Raack S (2018) Prehistoric copper mining in the northeast of the Iberian Peninsula: La Turquesa or Mas de les Moreres Mine (Cornudella de Montsant, Tarragona, Spain). Revista d’Arqueologia de Ponent, Número extra 3, Universitat de Lleida, Lleida

  22. Rodrigues AL, Cardoso G, Dias MI, et al (2018) Thermoluminescence as a tool for identifying archaeological “firesetting” evidence in at La Turquesa mine in Cornudella de Montsant, Catalonia. In: Rafel Fontanals N, Hunt MA, Soriano I, Delgado-Raack S (eds) Prehistoric copper mining in the northeast of the Iberian Peninsula: La Turquesa or Mas de les Moreres Mine (Cornudella de Montsant, Tarragona, Spain). Revista d’Arqueologia de Ponent, Número extra 3, Universitat de Lleida, Lleida, pp 33–40

  23. Andreazini A, Melgarejo JCC, Rafel Fontanals N, et al (2018) The structure and mineralogy of the mine. In: Rafel Fontanals N, Hunt MA, Soriano I, Delgado-Raack S (eds) Prehistoric copper mining in the northeast of the Iberian Peninsula: La Turquesa or Mas de les Moreres Mine (Cornudella de Montsant, Tarragona, Spain)., Revista d’. Revista d’Arqueologia de Ponent, Número extra 3, Universitat de Lleida, Lleida, Lleida, p 169

  24. Montero-Ruiz I (2018) The archaeometallurgical perspective. In: Rafel Fontanals N, Hunt MA, Soriano I, Delgado-Raack S (eds) Prehistoric copper mining in the northeast of the Iberian Peninsula: La Turquesa or Mas de les Moreres Mine (Cornudella de Montsant, Tarragona, Spain). Revista d’Arqueologia de Ponent, Número extra 3, Universitat de Lleida, Lleida., Lleida, pp 63–72

  25. Rodrigues AL, Dias MI, Valera AC et al (2019) Geochemistry, luminescence and innovative dose rate determination of a Chalcolithic calcite-rich negative feature. J Archaeol Sci Reports 26:101887. https://doi.org/10.1016/j.jasrep.2019.101887

    Article  Google Scholar 

  26. Brindley GW (1955) Identification of clays mineraly by X-Ray diffraction analysis. First Natl Conf Clays Clay Technol Bull 169:319–328. https://doi.org/10.1346/CCMN.1952.0010116

    Article  Google Scholar 

  27. Biscaye PE (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol Soc Am Bull 76:803–832

    Article  CAS  Google Scholar 

  28. Martin-Pozas JM (1968) El analisis mineralógico cuantitativo de los filosilicatos de la arcilla por difracción de rayos X. University of Granada, Spain

    Google Scholar 

  29. Rocha FJFT (1993) Argilas aplicadas a estudos litoestratigráficos e paleoambientais na bacia sedimentar de Aveiro. University of Aveiro, Portugal

    Google Scholar 

  30. Schultz LG (1964) Quantitative interpretation of mineralogical composition X-ray and chemical data for the Pierre Shale. U.S. Geol Surv Prof Pap 391:1–31

    Google Scholar 

  31. Trindade MJ, Dias MI, Rocha F et al (2011) Bromine volatilization during firing of calcareous and non-calcareous clays: archaeometric implications. Appl Clay Sci 53:489–499. https://doi.org/10.1016/j.clay.2010.07.001

    Article  CAS  Google Scholar 

  32. Trindade MJ, Dias MI, Coroado J, Rocha F (2009) Mineralogical transformations of calcareous rich clays with firing: a comparative study between calcite and dolomite rich clays from Algarve, Portugal. Appl Clay Sci 42:345–355. https://doi.org/10.1016/j.clay.2008.02.008

    Article  CAS  Google Scholar 

  33. Rodrigues AL, Dias MI, Prudêncio MI et al (2019) Paleoenvironmental considerations based on geochemistry and mineralogy of a Miocene lacustrine calcrete, southern Portugal. E3S Web Conf 98:06012. https://doi.org/10.1051/e3sconf/20199806012

    Article  CAS  Google Scholar 

  34. Rodrigues AL, Dias MI, Rocha F et al (2019) Palaeoenvironmental significance and pathways of calcrete development investigated with nuclear and related methods. J Radioanal Nucl Chem 321:541–556. https://doi.org/10.1007/s10967-019-06591-w

    Article  CAS  Google Scholar 

  35. Marques R, Jorge A, Franco D et al (2010) Clay resources in the Nelas region (Beira Alta), Portugal. A contribution to the characterization of potential raw materials for prehistoric ceramic production. Clay Miner 45:353–370. https://doi.org/10.1180/claymin.2010.045.3.353

    Article  CAS  Google Scholar 

  36. Prudêncio MI, Dias MI, Burbidge CI et al (2016) PGAA, INAA and luminescence to trace the “history” of “The Panoramic View of Lisbon”: Lisbon before the earthquake of 1755 in painted tiles (Portugal). J Radioanal Nucl Chem 307:541–547. https://doi.org/10.1007/s10967-015-4176-4

    Article  CAS  Google Scholar 

  37. Sanderson DCW, Bishop P, Houston I, Boonsener M (2001) Luminescence characterisation of quartz-rich cover sands from NE Thailand. Quat Sci Rev 20:893–900. https://doi.org/10.1016/S0277-3791(00)00014-7

    Article  Google Scholar 

  38. Burbidge CI, Sanderson DCWW, Housley RA et al (2007) Survey of Palaeolithic sites by luminescence profiling, a case study from Eastern Europe. Quat Geochronol 2:296–302. https://doi.org/10.1016/j.quageo.2006.05.024

    Article  Google Scholar 

  39. Rodrigues AL, Burbidge CI, Dias MI et al (2013) Luminescence and mineralogy of profiling samples from negative archaeological features. Mediterr Archaeol Archaeom 13:37–47

    Google Scholar 

  40. Odriozola CP, Burbidge CI, Dias MI et al (2014) Dating of Las mesas copper age walled enclosure (La Fuente, Spain). Trab Prehist 71:343–352. https://doi.org/10.3989/tp.2014.12138

    Article  Google Scholar 

  41. Sanderson DCW, Bishop P, Stark MT, Spencer JQ (2003) Luminescence dating of anthropogenically reset canal sediments from Angkor Borei, Mekong Delta, Cambodia. Quat Sci Rev 22:1111–1121. https://doi.org/10.1016/S0277-3791(03)00055-6

    Article  Google Scholar 

  42. Burbidge CI (2015) A broadly applicable function for describing luminescence dose response. J Appl Phys 118:044904. https://doi.org/10.1063/1.4927214

    Article  CAS  Google Scholar 

  43. Aitken MJ (1999) Archaeological dating using physical phenomena. Reports Prog Phys M J Aitken Rep Prog Phys 62:1333–1376. https://doi.org/10.1088/0034-4885/62/9/202

    Article  CAS  Google Scholar 

  44. Duller GAT (2003) Distinguishing quartz and feldspar in single grain luminescence measurements. Radiat Meas 37:161–165. https://doi.org/10.1016/S1350-4487(02)00170-1

    Article  CAS  Google Scholar 

  45. Murray AS, Wintle AG (2003) The single aliquot regenerative dose protocol: Potential for improvements in reliability. Radiat Meas 37:377–381. https://doi.org/10.1016/S1350-4487(03)00053-2

    Article  CAS  Google Scholar 

  46. Murray AS, Wintle AG (2000) Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiat Meas 32:57–73. https://doi.org/10.1016/S1350-4487(99)00253-X

    Article  CAS  Google Scholar 

  47. Duller GAT (2015) The Analyst software package for luminescence data: overview and recent improvements. Anc TL 33:35–42

    Google Scholar 

  48. AMC (2002) Analytical methods committee. Analyst 127(3):428–429

    Article  Google Scholar 

  49. Prescott JR, Stephan LG (1982) The contribution of cosmic radiation to the environmental dose for thermoluminescence dating. Latitude, altitude and depth dependences. Counc Eur PACT J 6:17–25

    CAS  Google Scholar 

  50. Prescott JR, Hutton JT (1988) Cosmic ray and gamma ray dosimetry for TL and ESR. Nucl Tracks Radiat Meas 14:223–227. https://doi.org/10.1016/1359-0189(88)90069-6

    Article  CAS  Google Scholar 

  51. Adamiec G, Aitken M (1988) Dose rate conversion factors. Anc TL 16:37–50

    Google Scholar 

  52. Richter D, Zink AJC, Przegietka KR et al (2003) Source calibrations and blind test results from the new Luminescence Dating Laboratory at the Instituto Tecnológico e Nuclear, Sacavém, Portugal. Anc TL 21:43–48

    Google Scholar 

  53. Marques R, Prudêncio MI, Russo D et al (2021) Evaluation of naturally occurring radionuclides (K, Th and U) in volcanic soils from Fogo Island, Cape Verde. J Radioanal Nucl Chem 330:347–355. https://doi.org/10.1007/s10967-021-07959-7

    Article  CAS  Google Scholar 

  54. Zimmerman DW (1971) Thermoluminescent dating using fine grains from pottery. Archaeometry 13:29–52. https://doi.org/10.1111/j.1475-4754.1971.tb00028.x

    Article  CAS  Google Scholar 

  55. Volzone C, Ortiga J (2011) SO2 gas adsorption by modified kaolin clays: Influence of previous heating and time acid treatments. J Environ Manage 92:2590–2595. https://doi.org/10.1016/j.jenvman.2011.05.031

    Article  CAS  PubMed  Google Scholar 

  56. Dias MI, Rodrigues AL, Kovács I et al (2020) Chronological assessment of della Robbia sculptures by using PIXE, neutrons and luminescence techniques. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 477:77–79. https://doi.org/10.1016/j.nimb.2019.10.008

    Article  CAS  Google Scholar 

  57. Dias MI, Prudêncio MI, Kasztovszky Z et al (2017) Nuclear techniques applied to provenance and technological studies of Renaissance majolica roundels from Portuguese museums attributed to della Robbia Italian workshop. J Radioanal Nucl Chem 312:205–219. https://doi.org/10.1007/s10967-017-5235-9

    Article  CAS  Google Scholar 

  58. Delgado-Raack S (2018) A technological and functional study of the macrolithic artefacts. In: Rafel Fontanals N, Hunt MA, Soriano I, Delgado-Raack S (eds) Prehistoric Copper Mining in the Northeast of the Iberian Peninsula: La Turquesa or Mas de Les Moreres Mine (Cornudella de Montsant, Tarragona, Spain). Revista d’Arqueologia de Ponent, Número extra 3, Universitat de Lleida, Lleida, pp 47–61

  59. Montero-Ruiz I, Rafel N, Rovira MC et al (2012) El cobre de Linares (Jaén) como elemento vinculado al comercio fenicio en El Calvari de El Molar (Tarragona). Menga, Rev Prehist Andalucía 3:167–184

    Google Scholar 

  60. Rafel N, Soriano I, Armada XL et al (2019) Lead and copper mining in Priorat county (Tarragona, Spain): From cooperative exchange networks to colonial trade (2600–500 BC). In: Armada XL, Murillo-Barroso M, Charlton M (eds) Metals, minds and mobility: Integrating scientific data with archaeological theory. Oxbow Books, Oxford, United Kingdom

    Google Scholar 

Download references

Acknowledgements

Portuguese team gratefully acknowledge the FCT (Portuguese Science and Technology Foundation) support through the UID/Multi/04349/2013 and UID/Multi/04349/20 (including a post-doctoral grant BL 36/2016_IST-ID of the first author in the C2TN) and post-doctoral grant SFRH/BPD/114986/2016 of the first author. Archaeometric and archaeological research has been possible thanks to various projects financed by the Autonomous Government of Catalonia and the Government of Spain: The protohistoric archaeological site of El Calvari del Molar and the mining-metallurgical area of Molar-Bellmunt-Falset (2000-2012) and Mining and Metallurgy in southern Catalonia: from Prehistory to the Mediaeval Period, 2014-2017 (Department of Culture, Government of Catalonia); The mining-metallurgical area of Molar-Bellmunt-Falset in Protohistory (Ministry of Science and Innovation, HUM2004-04861-C03-01); The mining-metallurgical area of Molar-Bellmunt-Falset in Protohistory: a comparison of hypotheses (Ministry of Science and Innovation, HAR2007-65725-C03-01); Social, technological and economic processes in the exploitation of mineral resources in the Priorat (Catalonia): a diachronic view (Ministry of Science and Innovation, HAR2010-21105-C02-01) and Mineral-metallic resources, trade and commerce in the prehistory and protohistory of the Iberian Peninsula (Catalonia and the north of the Valencian Country) (Ministry of the Economy and Competitiveness, HAR2014-54012-P). The study of the structure and mineralogy of the mine was carried out within the framework of the Consolidated Group of Mineral Resources 2014SGR 1661 of the Government of Catalonia. The archaeometry of minerals and metals was made possible by the technical and human support provided by the SGIker of the University of the Basque Country (EHU) and European funding (ERDF and ESF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Luísa Rodrigues.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, A.L., Marques, R., Dias, M.I. et al. Luminescence and compositional studies for the identification of “fire-setting” features at prehistoric mine La Turquesa (Catalonia, Spain). J Radioanal Nucl Chem 331, 1397–1408 (2022). https://doi.org/10.1007/s10967-022-08198-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08198-0

Keywords

Navigation