Skip to main content
Log in

Elemental composition of organic and non-organic foods determined by PIXE

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Nutrition and safety of foods is one of the more discussed topics in the modern society. We processed twenty food samples of the organic and non-organic origin in order to determine their elemental composition by the particle induced X-ray emission method. Except of some species (e.g., carrots), significant differences between the organic and non-organic types were not observed. Interestingly, the bananas’ pulps showed higher content of several elements (K, Ca, Sr) than their peels. Heavy metals (metalloids) were found to be below their limits of detection in the studied food samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Oliveira AG, Telles LF, Hess RA, Mahecha GAB, Oliveira CA (2007) Effects of the herbicide roundup on the epididymal region of drakes anas platyrhynchos. Reprod Toxicol 23:182–191. https://doi.org/10.1016/j.reprotox.2006.11.004

    Article  CAS  PubMed  Google Scholar 

  2. Rosculete C, Bonciu E, Rosculete E, Olaru L (2018) Determination of the environmental pollution potential of some herbicides by the assessment of cytotoxic and genotoxic effects on allium cepa. Int J Environ Res Public Health 16:75. https://doi.org/10.3390/ijerph16010075

    Article  CAS  PubMed Central  Google Scholar 

  3. Dalgaard-Mikkelsen S, Poulsen E (1962) Toxicology of herbicides. Pharmacol Rev 14:225–250

    CAS  PubMed  Google Scholar 

  4. Mullison WR (1970) Effects of herbicides on water and its inhabitants. Weed Sci 18:738–750. https://doi.org/10.1017/S0043174500034676

    Article  CAS  Google Scholar 

  5. Bassil KL, Vakil C, Sanborn M, Cole DC, Kaur JS, Kerr KJ (2007) Cancer health effects of pesticides: systematic review. Can Fam Physician 53:1705–1711

    Google Scholar 

  6. Sabarwal A, Kumar K, Singh RP (2018) Hazardous effects of chemical pesticides on human health–Cancer and other associated disorders. Environ Toxicol Pharmacol 63:103–114. https://doi.org/10.1016/j.etap.2018.08.018

    Article  CAS  PubMed  Google Scholar 

  7. Isin S, Yildirim I (2007) Fruit-growers’ perceptions on the harmful effects of pesticides and their reflection on practices: the case of Kemalpasa, Turkey. Crop Prot 26:917–922. https://doi.org/10.1016/j.cropro.2006.08.006

    Article  Google Scholar 

  8. Abdollahzadeh G, Sharifzadeh MS, Damalas CA (2015) Perceptions of the beneficial and harmful effects of pesticides among Iranian rice farmers influence the adoption of biological control. Crop Prot 75:124–131. https://doi.org/10.1016/j.cropro.2015.05.018

    Article  Google Scholar 

  9. Costa LG (2008) Toxic effects of pesticides. In: Klassen CD (ed) Cassarett and Doull’s toxicology: the basic science of poisons. McGraw-Hill, New York, pp 883–930

    Google Scholar 

  10. Dimkpa CO, Fugice J, Singh U, Lewis TD (2020) Development of fertilizers for enhanced nitrogen use efficiency–trends and perspectives. Sci Total Environ 731:139113. https://doi.org/10.1016/j.scitotenv.2020.139113

    Article  CAS  PubMed  Google Scholar 

  11. Ward M, Jones R, Brender J, de Kok T, Weyer P, Nolan B, Villanueva C, van Breda S (2018) Drinking water nitrate and human health: an updated review. Int J Environ Res Public Health 15:1557. https://doi.org/10.3390/ijerph15071557

    Article  CAS  PubMed Central  Google Scholar 

  12. Schulz H, Glaser B (2012) Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. J Plant Nutr Soil Sci 175:410–422. https://doi.org/10.1002/jpln.201100143

    Article  CAS  Google Scholar 

  13. Oladele SO, Adeyemo AJ, Awodun MA (2019) Influence of rice husk biochar and inorganic fertilizer on soil nutrients availability and rain-fed rice yield in two contrasting soils. Geoderma 336:1–11. https://doi.org/10.1016/j.geoderma.2018.08.025

    Article  CAS  Google Scholar 

  14. Zhao J, Ni T, Li J, Lu Q, Fang Z, Huang Q, Zhang R, Li R, Shen B, Shen Q (2016) Effects of organic–inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice–wheat cropping system. Appl Soil Ecol 99:1–12. https://doi.org/10.1016/j.apsoil.2015.11.006

    Article  Google Scholar 

  15. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478:337–342. https://doi.org/10.1038/nature10452

    Article  CAS  PubMed  Google Scholar 

  16. He ZL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140. https://doi.org/10.1016/j.jtemb.2005.02.010

    Article  CAS  PubMed  Google Scholar 

  17. Herawati H, Suzuki S, Hayashi K, Rivai IF, Koyama H (2000) Cadmium, copper, and zinc levels in rice and soil of Japan, Indonesia, and China by soil type. Bull Environ Contam Toxicol 64:33–39. https://doi.org/10.1007/s001289910006

    Article  CAS  PubMed  Google Scholar 

  18. Arruti A, Fernández-Olmo I, Irabien Á (2010) Evaluation of the contribution of local sources to trace metals levels in urban PM2.5 and PM10 in the Cantabria region (Northern Spain). J Environ Monit 12:1451. https://doi.org/10.1039/b926740a

    Article  CAS  PubMed  Google Scholar 

  19. Sträter E, Westbeld A, Klemm O (2010) Pollution in coastal fog at Alto Patache, Northern Chile. Environ Sci Pollut Res 17:1563–1573. https://doi.org/10.1007/s11356-010-0343-x

    Article  CAS  Google Scholar 

  20. Shallari S, Schwartz C, Hasko A, Morel JL (1998) Heavy metals in soils and plants of serpentine and industrial sites of Albania. Sci Total Environ 209:133–142. https://doi.org/10.1016/S0048-9697(98)80104-6

    Article  CAS  PubMed  Google Scholar 

  21. Nadal M, Schuhmacher M, Domingo JL (2004) Metal pollution of soils and vegetation in an area with petrochemical industry. Sci Total Environ 321:59–69. https://doi.org/10.1016/j.scitotenv.2003.08.029

    Article  CAS  PubMed  Google Scholar 

  22. Krishna AK, Govil PK (2007) Soil contamination due to heavy metals from an industrial area of Surat, Gujarat, Western India. Environ Monit Assess 124:263–275. https://doi.org/10.1007/s10661-006-9224-7

    Article  CAS  PubMed  Google Scholar 

  23. Chang L (1996) Toxicology of metals. CRC Lewis Publishers, Boca Raton

    Google Scholar 

  24. Liu J, Goyer RA, Waalkers MP (2008) Toxic effects of metals. In: Klassen CD (ed) Cassarett and Doull’s toxicology: the basic science of poisons. McGraw-Hill, New York, pp 931–980

    Google Scholar 

  25. Barker AV, Pilbeam DJ (2015) Handbook of plant nutrition. Taylor & Francis, Boca Raton

    Book  Google Scholar 

  26. White PJ, Brown PH (2010) Plant nutrition for sustainable development and global health. Ann Bot 105:1073–1080. https://doi.org/10.1093/aob/mcq085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chatzav M, Peleg Z, Ozturk L, Yazici A, Fahima T, Cakmak I, Saranga Y (2010) Genetic diversity for grain nutrients in wild emmer wheat: potential for wheat improvement. Ann Bot 105:1211–1220. https://doi.org/10.1093/aob/mcq024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bouis HE, Welch RM (2010) Biofortification-A sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci 50:S-20-S-32. https://doi.org/10.2135/cropsci2009.09.0531

    Article  Google Scholar 

  29. Watson CA, Öborn I, Edwards AC, Dahlin AS, Eriksson J, Lindström BEM, Linse L, Owens K, Topp CFE, Walker RL (2012) Using soil and plant properties and farm management practices to improve the micronutrient composition of food and feed. J Geochem Explor 121:15–24. https://doi.org/10.1016/j.gexplo.2012.06.015

    Article  CAS  Google Scholar 

  30. Jones DL, Cross P, Withers PJA, DeLuca TH, Robinson DA, Quilliam RS, Harris IM, Chadwick DR, Edwards-Jones G (2013) Nutrient stripping: the global disparity between food security and soil nutrient stocks. J Appl Ecol 50:851–862. https://doi.org/10.1111/1365-2664.12089

    Article  Google Scholar 

  31. Ramakrishnan U (2002) Prevalence of micronutrient malnutrition worldwide. Nutr Rev 60:S46–S52. https://doi.org/10.1301/00296640260130731

    Article  PubMed  Google Scholar 

  32. White PJ, Broadley MR, Thompson JA, McNicol JW, Crawley MJ, Poulton PR, Johnston AE (2012) Testing the distinctness of shoot ionomes of angiosperm families using the Rothamsted park grass continuous hay experiment. New Phytol 196:101–109. https://doi.org/10.1111/j.1469-8137.2012.04228.x

    Article  CAS  PubMed  Google Scholar 

  33. Stein AJ (2010) Global impacts of human mineral malnutrition. Plant Soil 335:133–154. https://doi.org/10.1007/s11104-009-0228-2

    Article  CAS  Google Scholar 

  34. Ali MHH, Al-Qahtani KM (2012) Assessment of some heavy metals in vegetables, cereals and fruits in Saudi Arabian markets. Egypt J Aquat Res 38:31–37. https://doi.org/10.1016/j.ejar.2012.08.002

    Article  Google Scholar 

  35. Basha AM, Yasovardhan N, Satyanarayana SV, Reddy GVS, Vinod Kumar A (2014) Trace metals in vegetables and fruits cultivated around the surroundings of Tummalapalle uranium mining site, Andhra Pradesh, India. Toxicol Reports 1:505–512. https://doi.org/10.1016/j.toxrep.2014.07.011

    Article  CAS  Google Scholar 

  36. Papa S, Cerullo L, Di Monaco A, Bartoli G, Fioretto A (2009) Trace elements in fruit and vegetable. Environ Qual 2:79–83. https://doi.org/10.6092/issn.2281-4485/3819

    Article  Google Scholar 

  37. Lante A, Lomolino G, Cagnin M, Spettoli P (2006) Content and characterisation of minerals in milk and in Crescenza and Squacquerone Italian fresh cheeses by ICP-OES. Food Control 17:229–233. https://doi.org/10.1016/j.foodcont.2004.10.010

    Article  CAS  Google Scholar 

  38. Roumie M, Nsouli B, Chalhoub G, Hamdan M (2010) Quality control of coins mint using PIXE and RBS analysis. Nucl Instrum Methods Phys B 268:1916–1919. https://doi.org/10.1016/j.nimb.2010.02.101

    Article  CAS  Google Scholar 

  39. Ben AH, Gharbi F, Roumié M, Baccouche S, Ben RK, Nsouli B, Trabelsi A (2010) PIXE analysis of medieval silver coins. Mater Charact 61:59–64. https://doi.org/10.1016/j.matchar.2009.10.008

    Article  CAS  Google Scholar 

  40. Pantelica A, Ene A, Gugiu M, Ciortea C, Constantinescu O (2011) PIXE analysis of some vegetable species. Rom Reports Phys 63:997–1008

    CAS  Google Scholar 

  41. Manuel JE, Rout B, Szilasi SZ, Bohara G, Deaton J, Luyombya H, Briski KP, Glass GA (2014) Fish gelatin thin film standards for biological application of PIXE. Nucl Instrum Methods Phys B 332:37–41. https://doi.org/10.1016/j.nimb.2014.02.025

    Article  CAS  Google Scholar 

  42. Fiedler A, Reinert T, Morawski M, Brückner G, Arendt T, Butz T (2007) Intracellular iron concentration of neurons with and without perineuronal nets. Nucl Instrum Methods Phys B 260:153–158. https://doi.org/10.1016/j.nimb.2007.02.069

    Article  CAS  Google Scholar 

  43. Ivošević T, Orlić I, Radović IB (2015) Long term fine aerosol analysis by XRF and PIXE techniques in the city of Rijeka, Croatia. Nucl Instrum Methods Phys B 363:119–123. https://doi.org/10.1016/j.nimb.2015.08.030

    Article  CAS  Google Scholar 

  44. Sadek H (2015) μ-PIXE mapping of archeological glazed pottery from Egypt. Appl Surf Sci 332:281–286. https://doi.org/10.1016/j.apsusc.2015.01.115

    Article  CAS  Google Scholar 

  45. Kaizer J, Ješkovský M, Pánik J, Zeman J, Dulanská S, Horváthová B, Povinec PP (2018) Tracing of radiocesium extraction from waters and uranium content in liquid samples by particle induced X-ray emission (PIXE). J Radioanal Nucl Chem 318:591–597. https://doi.org/10.1007/s10967-018-6157-x

    Article  CAS  Google Scholar 

  46. Kaizer J, Kvasniak J, Ješkovský M, Povinec PP (2019) PIXE analysis of elemental composition of food at the CENTA laboratory. Acta Phys Univ Comenianae LIV:123–132

    Google Scholar 

  47. Kvasniak J, Kaizer J, Ješkovský M, Pánik J, Zeman J, Povinec PP (2019) Determination of elements in foods and organic foods with the use of advanced techniques of PIXE/PIGE analysis (in Slovak). In: Horváthová B, Siliková V (eds) Proc. Intern. Conf. XX. Štiavnicke dni. pp 98–107

  48. Amptek Fast SDD X-Ray Detectors for XRF/EDS. https://www.amptek.com/products/x-ray-detectors/fastsdd-x-ray-detectors-for-xrf-eds/fastsdd-silicon-drift-detector. Accessed 10 Jul 2021

  49. International Atomic Energy Agency IAEA-359 reference material. https://nucleus.iaea.org/sites/ReferenceMaterials/Pages/IAEA-359.aspx. Accessed 10 July 2021

  50. International Atomic Energy Agency IAEA-336 reference material. https://nucleus.iaea.org/sites/ReferenceMaterials/Pages/IAEA-336.aspx. Accessed 10 December 2021

  51. Povinec PP, Masarik J, Kúš P, Holý K, Ješkovský M, Breier R, Staníček J, Šivo A, Richtáriková M, Kováčik A, Szarka J, Steier P, Priller A (2015) A new IBA-AMS laboratory at the Comenius University in Bratislava (Slovakia). Nucl Instrum Methods Phys B 342:321–326. https://doi.org/10.1016/j.nimb.2014.10.011

    Article  CAS  Google Scholar 

  52. Povinec PP, Masarik J, Ješkovský M, Breier R, Kaizer J, Pánik J, Richtáriková M, Staníček J, Šivo A, Zeman J (2016) Recent results from the AMS/IBA laboratory at the Comenius University in Bratislava: preparation of targets and optimization of ion sources. J Radioanal Nucl Chem 307:2101–2108. https://doi.org/10.1007/s10967-015-4406-9

    Article  CAS  Google Scholar 

  53. Zeman J, Ješkovský M, Kaiser R, Kaizer J, Povinec PP, Staníček J (2017) PIXE beam line at the CENTA facility of the Comenius University in Bratislava: first results. J Radioanal Nucl Chem 311:1409–1415. https://doi.org/10.1007/s10967-016-5004-1

    Article  CAS  Google Scholar 

  54. Ješkovský M, Kaizer J, Kontuľ I, Kvasniak J, Pánik J, Zeman J, Povinec PP (2022) Recent developments in IBA analysis at CENTA, Bratislava. EPJ Web of Conferences. Accepted

  55. Campbell JL, Boyd NI, Grassi N, Bonnick P, Maxwell JA (2010) The Guelph PIXE software package IV. Nucl Instrum Methods Phys B 268:3356–3363. https://doi.org/10.1016/j.nimb.2010.07.012

    Article  CAS  Google Scholar 

  56. Simonoff M, Hamon C, Moretto P, Llabador Y, Simonoff G (1988) High sensitivity PIXE determination of selenium in food and biological samples using a preconcentration technique. Nucl Instrum Methods Phys B 31:442–448. https://doi.org/10.1016/0168-583X(88)90344-8

    Article  Google Scholar 

  57. Braziewicz J, Fijał I, Czyżewski T, Jaskóła M, Korman A, Banaś D, Kubala-Kukuś A, Majewska U, Zemło L (2002) PIXE and XRF analysis of honey samples. Nucl Instrum Methods Phys B 187:231–237. https://doi.org/10.1016/S0168-583X(01)00942-9

    Article  CAS  Google Scholar 

  58. Bancuta A, Stihi C, Popescu IV, Badica T, Cimpoca GV (2006) Elemental analysis of aerosols using PIXE method. J Phys Conf Ser 41:502–505. https://doi.org/10.1088/1742-6596/41/1/056

    Article  CAS  Google Scholar 

  59. Lal M, Joseph D, Choudhury R, Bajpai H, Gauba I, Lokeshwar M, Wagle C (1991) Studies of blood lead levels in children by proton-induced X-ray emission (PIXE). Sci Total Environ 103:209–214. https://doi.org/10.1016/0048-9697(91)90146-6

    Article  CAS  PubMed  Google Scholar 

  60. Coultate T (2002) Food: The chemistry of its components. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  61. Stone SF, Freitas MC, Parr RM, Zeisler R (1995) Elemental characterization of a candidate lichen research material–IAEA-336. Fresenius J Anal Chem 352:227–231. https://doi.org/10.1007/BF00322332

    Article  CAS  Google Scholar 

  62. Fageria N, Baligar V (2005) Nutrient availability. In: Hillel D (ed) Encyclopedia of soils in the environment. Elsevier, San Diego, pp 63–71

    Chapter  Google Scholar 

  63. FooDB Version 1.0. https://foodb.ca/. Accessed 20 Jul 2021

  64. Majkowska-Gadomska J, Wierzbicka B (2008) Content of basic nutrients and minerals in heads of selected varieties of red cabbage [Brasicca oleracea var. capitata f. rubra]. Polish J Environ Stud 17:295–298

    CAS  Google Scholar 

  65. Koudela M, Petříková K (2008) Nutrients content and yield in selected cultivars of leaf lettuce (Lactuca sativa L. var. crispa). Hortic Sci 35:99–106. https://doi.org/10.17221/3/2008-HORTSCI

    Article  CAS  Google Scholar 

  66. Ekholm P, Reinivuo H, Mattila P, Pakkala H, Koponen J, Happonen A, Hellström J, Ovaskainen M-L (2007) Changes in the mineral and trace element contents of cereals, fruits and vegetables in Finland. J Food Compos Anal 20:487–495. https://doi.org/10.1016/j.jfca.2007.02.007

    Article  CAS  Google Scholar 

  67. Clough GH (1994) Potato tuber yield, mineral concentration, and quality after calcium fertilization. J Am Soc Hortic Sci 119:175–179. https://doi.org/10.21273/JASHS.119.2.175

    Article  CAS  Google Scholar 

  68. Adotey D, Serfor-Armah Y, Fianko J, Yeboah P (2009) Essential elements content in core vegetables grown and consumed in Ghana by instrumental neutron activation analysis. African J Food Sci 3:243–249. https://doi.org/10.5897/AJFS.9000121

    Article  CAS  Google Scholar 

  69. Martinez Meyer MR, Rojas A, Santanen A, Stoddard FL (2013) Content of zinc, iron and their absorption inhibitors in Nicaraguan common beans (Phaseolus vulgaris L.). Food Chem 136:87–93. https://doi.org/10.1016/j.foodchem.2012.07.105

    Article  CAS  PubMed  Google Scholar 

  70. Ginocchio R, Rodríguez PH, Badilla-Ohlbaum R, Allen HE, Lagos GE (2002) Effect of soil copper content and pH on copper uptake of selected vegetables grown under controlled conditions. Environ Toxicol Chem 21:1736–1744. https://doi.org/10.1002/etc.5620210828

    Article  CAS  PubMed  Google Scholar 

  71. European Commission (2006) Commission Regulation (EC) No 1881/2006. Off J Eur Union L 364:5–24

    Google Scholar 

  72. National Health and Family Planning Commission and China Food and Drug Administration (2017) National Food Safety Standard for Maximum Levels of Contaminants in Foods (GB 2762–2017)

Download references

Acknowledgements

The authors acknowledge a support provided by the VEGA grant no. 1/0625/21, and by Advancing University Capacity and Competence in Research, Development and Innovation (ACCORD) ITMS2014 project no. 313021X329.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Kaizer.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaizer, J., Ješkovský, M., Kvasniak, J. et al. Elemental composition of organic and non-organic foods determined by PIXE. J Radioanal Nucl Chem 331, 1249–1259 (2022). https://doi.org/10.1007/s10967-022-08188-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08188-2

Keywords

Navigation