Skip to main content
Log in

Study on the adsorption performance of zeolitic imidazolate framework-8 (ZIF-8) for Co2+ and Mn2+

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this work, zeolitic imidazolate framework-8 (ZIF-8) with a microporous structure for 60Co and 54Mn adsorption was prepared at room temperature, and the structure and thermal stability of the material were tested. The effects of the initial pH value, contact time, initial concentration and other factors of the solution on the adsorption performance of Co2+ and Mn2+ on ZIF-8 were investigated. The results suggest that the adsorption process of Co2+ and Mn2+ on ZIF-8 were spontaneous and endothermic, and mainly occurs as monolayer chemisorption. The maximum adsorption capacities of Co2+ and Mn2+ for ZIF-8 were 178.75 mg/g and 236.75 mg/g, respectively, at a pH of 7.0 and a temperature of 303 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Yuan G, Tu H, Li M, Liu J, Zhao C, Liao J, Yang Y, Yang J, Liu N (2018) Glycine derivative-functionalized metal-organic framework (MOF) materials for Co(II) removal from aqueous solution. Appl Surface Sci 466:903–910

    Article  Google Scholar 

  2. Qiu RF, Cheng FQ (2016) Modification of waste coal gangue and its application in the removal of Mn2+ from aqueous solution. Water Sci Technol 74(2):524–534

    Article  CAS  PubMed  Google Scholar 

  3. Reaney SH, Kwik-Uribe CL, Smith DR (2002) Manganese oxidation state and its implications for toxicity. Chem Res Toxicol 15(9):1119–1126

    Article  CAS  PubMed  Google Scholar 

  4. Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4(4):361–377

    Article  CAS  Google Scholar 

  5. Wellens S, Thijs B, Binnemans K (2012) An environmentally friendlier approach to hydrometallurgy: highly selective separation of cobalt from nickel by solvent extraction with undiluted phosphonium ionic liquids. Green Chem 14:1657–1665

    Article  CAS  Google Scholar 

  6. Piscureanu A, Chican I, Varasteanu D, Dulama M, Ruse M (2015) Aspects concerning the selection of ion exchange resin for low level radwaste waters decontamination. Revista de Chimie -Bucharest- Original Edition- 66(11):1819–1825

    CAS  Google Scholar 

  7. Fu FL, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review sciencedirect. J Environ Manage 92(3):407–418

    Article  CAS  PubMed  Google Scholar 

  8. Narin I, Soylak M (2003) Enrichment and determinations of nickel(II), cadmium(II), copper(II), cobalt(II) and lead(II) ions in natural waters, table salts, tea and urine samples as pyrrolydine dithiocarbamate chelates by membrane filtration–flame atomic absorption spectrometry c. Anal Chim Acta 493(2):205–212

    Article  CAS  Google Scholar 

  9. Fang F, Kong L, Huang J, Wu S, Zhang K, Wang X, Sun B, Jin Z, Wang J, Huang XJ, Liu J (2014) Removal of cobalt ions from aqueous solution by an amination graphene oxide nanocomposite. J Hazard Mater 270:1–10

    Article  CAS  PubMed  Google Scholar 

  10. Bryaskova R, Georgieva N, Pencheva D, Todorova Z, Lazarova N, Kantardjiev T (2014) Synthesis and characterization of hybrid materials with embedded silver nanoparticles and their application as antimicrobial matrices for waste water purification. Colloids Surf A 444(4):114–119

    Article  CAS  Google Scholar 

  11. Manilevich FD, BI Danil’Tsev, (2013) Improvement of the efficiency of electrochemical refining of cobalt. Russ J Appl Chem 86(9):1333–1339

    Article  CAS  Google Scholar 

  12. Patil DS, Chavan SM, Oubagaranadin J (2016) A review of technologies for manganese removal from wastewaters. J Environ Chem Eng 4(1):468–487

    Article  CAS  Google Scholar 

  13. Wang Y, Ye G, Chen H, Hu X, Niu Z, Ma S (2015) Functionalized metal-organic framework as a new platform for efficient and selective removal of cadmium(II) from aqueous solution. J Mater Chem A 3(29):15292–15298

    Article  CAS  Google Scholar 

  14. Yuan GY, Tian Y, Liu J, Tu H, Liao J, Yang J (2017) Schiff base anchored on metal-organic framework for Co(II) removal from aqueous solution. Chem Eng J 326:691–699

    Article  CAS  Google Scholar 

  15. Tranchemontagne DJ, Hunt JR, Yaghi OM (2008) Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 64(36):8553–8557

    Article  CAS  Google Scholar 

  16. Ryan JK, Daren JT, Fang QR, Li JR, Trevor AM, Mark DY, Yuan DQ, Zhao D, Zhuang WJ, Zhou HC (2009) Potential applications of metal-organic frameworks. Coord Chem Rev 253(23–24):3042–3066

    Google Scholar 

  17. Eddaoudi M (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295(5554):469–472

    Article  CAS  Google Scholar 

  18. Yu Z, Deschamps J, Hamon L, Prabhakaran PK, Pre P (2017) Hydrogen adsorption and kinetics in MIL-101(Cr) and hybrid activated carbon-MIL-101(Cr) materials. Int J Hydrogen Energy 42(12):8021–8031

    Article  CAS  Google Scholar 

  19. Li B, Zhang Y, Ma D, Lu L, Li G, Li G (2012) A strategy toward constructing a bifunctionalized mof catalyst: post-synthetic modification of MOFs on organic ligands and coordinatively unsaturated metal sites. Chem Commun 48(49):6151–6153

    Article  CAS  Google Scholar 

  20. Wu CD, Hu AG, Lin Z, Lin WB (2005) A homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis. J Am Chem Soc 127(25):8940–8941

    Article  CAS  PubMed  Google Scholar 

  21. Qu F, Xia L, Wu C, Liu L, Li G, You J (2016) Sensitive and accurate determination of sialic acids in serum with the aid of dispersive solid-phase extraction using the zirconium-based MOF of UIO-66-NH2 as sorbent. RSC Adv 6(69):64895–64901

    Article  CAS  Google Scholar 

  22. Esrafili L, Safarifard V, Tahmasebi E, Esrafili MD, Morsali A (2018) Functional group effect of isoreticular metal–organic frameworks on heavy metal ion adsorption. New J Chem 42:8864–8873

    Article  CAS  Google Scholar 

  23. Hu Z, Deibert BJ, Li J (2014) Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem Soc Rev 43(16):5815–5840

    Article  CAS  PubMed  Google Scholar 

  24. Dalapati R, Biswas S (2017) Post-synthetic modification of a metal-organic framework with fluorescent-tag for dual naked-eye sensing in aqueous medium. Sens Actuators B Chem 239:759–767

    Article  CAS  Google Scholar 

  25. Cunha D, Yahia MB, Hall S, Miller SR, Chevreau H, Elka ME (2013) Rationale of drug encapsulation and release from biocompatible porous metal-organic frameworks. Chem Mater 25(14):2767–2776

    Article  CAS  Google Scholar 

  26. Taylor PK, Rocca JD, Xie Z, Tran S, Lin W (2009) Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. J Am Chem Soc 131(40):14261–14263

    Article  Google Scholar 

  27. Zhao Y, Pan Y, Liu W, Zhang L (2015) Removal of heavy metal ions from aqueous solutions by adsorption onto ZIF-8 nanocrystals. Chem Lett 44(6):758–760

    Article  CAS  Google Scholar 

  28. Li K, Miwornunyuie N, Chen L, Huang J, Amaniampong PS, Koomson DA (2021) Sustainable application of ZIF-8 for heavy-metal removal in aqueous solutions. Sustainability 13(2):984

    Article  CAS  Google Scholar 

  29. Li J, Wu Z, Duan Q, Li X, Sun Y (2020) Simultaneous removal of U(VI) and Re(VII) by highly efficient functionalized ZIF-8 nanosheets adsorbent. J Hazard Mater 393:122398

    Article  CAS  PubMed  Google Scholar 

  30. Wu YH, Li BY, Wang XX, Yu SJ, Hong W (2019) Magnetic metal-organic frameworks (Fe3O4@ZIF-8) composites for U(VI) and Eu(III) elimination: simultaneously achieve favorable stability and functionality. Chem Eng J 378:122105

    Article  CAS  Google Scholar 

  31. Li N, Zhou L, Jin X, Owens G, Chen Z (2019) Simultaneous removal of tetracycline and oxytetracycline antibiotics from wastewater using a ZIF-8 metal organic-framework. J Hazard Mater 366(15):563–572

    Article  CAS  PubMed  Google Scholar 

  32. Hiroki K, Yuta N, Kousuke Y, Miho O, Takao M (2020) Surfactant-assisted synthesis of nanocrystalline zeolitic imidazolate framework 8 and 67 for adsorptive removal of perfluorooctane sulfonate from aqueous solution. Catal Today 352:220–226

    Article  Google Scholar 

  33. Park KS, Zheng N, Cté AP, Choi JY, Yaghi OM (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci 103(27):10186–10191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nune SK, Thallapally RK, Dohnalkova R, Wang R, Liu J, Exarhos RJ (2010) Synthesis and properties of nano zeolitic imidazolate frameworks. Chem Commun 46(27):4878–4880

    Article  CAS  Google Scholar 

  35. Wu H, Zhou W, Yildirim T (2007) Hydrogen storage in a prototypical zeolitic imidazolate framework-8. J Am Chem Soc 129(17):5314–5315

    Article  CAS  PubMed  Google Scholar 

  36. Lopachin RM, Gavin T, Decaprio A, Barber DS (2012) Application of the hard and soft, acids and bases (HSAB) theory to toxicant-target interactions. Chem Res Toxicol 25(2):239–251

    Article  CAS  PubMed  Google Scholar 

  37. Li J, Wu YN, Li Z, Zhang B, Zhu M, Hu X (2014) Zeolitic imidazolate framework-8 with high efficiency in trace arsenate adsorption and removal from water. J Phys Chem C 118(47):27382–27387

    Article  CAS  Google Scholar 

  38. Miralda CM, Macias EE, Zhu M (2016) Zeolitic imidazole framework-8 catalysts in the conversion of CO2 to chloropropene carbonate. ACS Catal 2(1):180–183

    Article  Google Scholar 

  39. Pan Y, Liu Y, Zeng G, Zhao L, Lai Z (2011) Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem Commun 47(7):2071–2073

    Article  CAS  Google Scholar 

  40. Hu ZG, Peng YW, Kang ZX, Qian YH, Zhao D (2015) A modulated hydrothermal (MHT) approach for the facile synthesis of UIO-66-Type MOFs. Inorg Chem 54(10):4862–4868

    Article  CAS  PubMed  Google Scholar 

  41. Awual MR, Imm R, Yaita T, Khaleque MA, Ferdows M (2014) pH dependent Cu(II) and Pd(II) ions detection and removal from aqueous media by an efcient mesoporous adsorbent. Chem Eng J 236(2):100–109

    Article  CAS  Google Scholar 

  42. Zhang L, Wei JY, Zhao X, Li FZ, Feng J, Zhang M, Cheng XZ (2016) Competitive adsorption of strontium and cobalt onto tin antimonate. Chem Eng J 285:679–689

    Article  CAS  Google Scholar 

  43. Zhang L, Zhang H, Ge Z, Yu X (2011) Impact of environmental conditions on the sorption behavior of radionuclide 60Co(II) on MnO2. J Radioanal Nucl Chem 288(2):537–546

    Article  CAS  Google Scholar 

  44. Xu R, Zhou G, Tang Y, Chu L, Liu C, Zeng Z, Luo S (2015) New double network hydrogel adsorbent: highly efficient removal of Cd(II) and Mn(II) ions in aqueous solution. Chem Eng J 275:179–188

    Article  CAS  Google Scholar 

  45. Jian MP, Liu B, Zhang GS, Liu RP, Zhang XW (2015) Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8) nanoparticles. Colloids Surf A 465(20):67–76

    Article  CAS  Google Scholar 

  46. Guo WL, Chen R, Liu Y, Meng MJ, Meng XG, Hu ZY, Song ZL (2013) Preparation of ion-imprinted mesoporous silica SBA-15 functionalized with triglycine for selective adsorption of Co(II). Colloids Surf A 436(35):693–703

    Article  CAS  Google Scholar 

  47. Altinisik A, Gür E, Seki Y (2010) A natural sorbent, lufa cylindrica for the removal of a model basic dye. J Hazard Mater 179(1–3):658–664

    Article  CAS  PubMed  Google Scholar 

  48. Liang CQ, Jia MC, Wang XW, Du ZH, Ding H (2019) Preparation of potassium niobium sulfide and its selective adsorption properties for Sr2+ and Co2+. J Radioanal Nucl Chem 322(12):1–11

    Google Scholar 

  49. Rui MCV, Campinas M, Costa H, Rosa MJ (2014) How do the hsdm and boyd’s model compare for estimating intraparticle difusion coefcients in adsorption processes. Adsorption 20(5–6):737–746

    Google Scholar 

  50. Hassanzadeh M, Ghaemy M (2018) Preparation of bio-based keratin-derived magnetic molecularly imprinted polymer nanoparticles for the facile and selective separation of bisphenol a from water. J Sep Sci 41(10):2296–2304

    Article  CAS  PubMed  Google Scholar 

  51. Khan AA, Singh RP (1987) Adsorption thermodynamics of carbofuran on Sn (IV) arsenosilicate in H+, Na+ and Ca2+ forms. Colloids Surf 24(1):33–42

    Article  CAS  Google Scholar 

  52. Zahakifar F, Keshtkar AR, Talebi M (2021) Synthesis of sodium alginate (SA)/polyvinyl alcohol (PVA)/polyethylene oxide (PEO)/ZSM-5 zeolite hybrid nanostructure adsorbent by casting method for uranium (VI) adsorption from aqueous solutions. Prog Nucl Energy 134:103642

    Article  CAS  Google Scholar 

  53. Xing M, Wang J (2016) Nanoscaled zero valent iron/graphene composite as an efficient adsorbent for Co(II) removal from aqueous solution. J Colloid Interface 474:119–128

    Article  CAS  Google Scholar 

  54. Yin CY, Aroua MK, Daud WMAW (2007) Impregnation of palm shell activated carbon with polyethyleneimine and its effects on Cd2+ adsorption. Colloid Surface A 307(1–3):128–136

    Article  CAS  Google Scholar 

  55. Ajenifuja E, Ajao JA, Ajayi EOB (2017) Equilibrium adsorption isotherm studies of Cu(II) and Co(II) in high concentration aqueous solutions on Ag-TiO2-modifed kaolinite ceramic adsorbents. Appl Water Sci 7(5):2279–2286

    Article  CAS  Google Scholar 

  56. Sarada B, Prasad MK, Kumar KK, Murthy CVR (2014) Cadmium removal by macro algae caulerpa fastigiata:characterization, kinetic, isotherm and thermodynamic studies. J Environ Chem Eng 2(3):1533–1542

    Article  CAS  Google Scholar 

  57. Zahakifar F, Keshtkar AR, Talebi M (2020) Performance evaluation of sodium alginate/polyvinyl alcohol/polyethylene oxide/zsm5 zeolite hybrid adsorbent for ion uptake from aqueous solutions: a case study of thorium (IV). J Radioanal Nucl Chem 327(3):65–72

    Google Scholar 

  58. Alamdarlo FV, Solookinejad G, Zahakifar F, Jalal MR, Jabbari M (2021) Study of kinetic, thermodynamic, and isotherm of sr adsorption from aqueous solutions on graphene oxide (GO) and (aminomethyl) phosphonic acid-graphene oxide (AMPA-GO). J Radioanal Nucl Chem 329(2):1033–1043

    Article  CAS  Google Scholar 

  59. Li H, Cao X, Zhang C, Yu Q, Zhao Z, Niu X (2017) Enhanced adsorptive removal of anionic and cationic dyes from single or mixed dye solutions using MOF PCN-222. RSC Adv 7(27):16273–16281

    Article  CAS  Google Scholar 

  60. Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30(1):38–70

    Article  CAS  Google Scholar 

  61. Nightingale ERJ (1958) Phenomenological theory of ion solvation. Efective radii of hydrated ions. J Phys Chem 63(9):566–567

    Google Scholar 

  62. Wen L, Nan X, Wang T, Lin X, Ni J (2013) Infuence of pH, ionic strength and humic acid on competitive adsorption of Pb(II), Cd(II) and Cr(III) onto titanate nanotubes. Chem Eng J 215(3):366–374

    Google Scholar 

  63. Song W, Hu J, Zhao Y, Shao D, Li J (2013) Efcient removal of cobalt from aqueous solution using β-cyclodextrin modifed graphene oxide. RSC Adv 3:9514

    Article  CAS  Google Scholar 

  64. Yuan GY, Tu H, Liu J, Zhao C, Liao J, Yang Y, Yang J, Ning L (2018) A novel ion-imprinted polymer induced by the glycylglycine modified metal-organic framework for the selective removal of Co(II) from aqueous solutions. Chem Eng J 333(1):280–288

    Article  CAS  Google Scholar 

  65. Liu Y, Zhong G, Liu Z, Meng M, Jiang Y, Ni L, Guo W, Liu F (2015) Preparation of core-shell ion imprinted nanoparticles via photoinitiated polymerization at ambient temperature for dynamic removal of cobalt in aqueous solution. RSC Adv 104(5):85691–85704

    Article  Google Scholar 

  66. Ma L, Peng Y, Wu B, Lei D, Xu H (2013) Pleurotus ostreatus nanoparticles as a new nano-biosorbent for removal of Mn(II) from aqueous solution. Chem Eng J 225:59–67

    Article  CAS  Google Scholar 

  67. Dawodu FA, Akpomie KG (2014) Simultaneous adsorption of Ni(II) and Mn(II) ions from aqueous solution unto a nigerian kaolinite clay. J Market Res 3(2):129–141

    CAS  Google Scholar 

Download references

Acknowledgements

The work described in this paper was fully supported by a Grant from the National Natural Science Foundation of China (No. 51573208).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowei Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Wang, X., Men, J. et al. Study on the adsorption performance of zeolitic imidazolate framework-8 (ZIF-8) for Co2+ and Mn2+. J Radioanal Nucl Chem 331, 1367–1379 (2022). https://doi.org/10.1007/s10967-021-08186-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08186-w

Keywords

Navigation