Skip to main content
Log in

Auto-deposition of 210Bi and 210Po on nickel discs and their application in the analysis of natural waters

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This study presents a time-efficient method of analysing 210Pb, 210Bi, and 210Po in natural waters. The optimum pH (1.00), temperature (95 °C), and time (4.5 h) for simultaneous auto-deposition of 210Bi and 210Po onto Ni discs were determined and thermodynamically and kinetically clarified. Under the optimum conditions, the determination of 210Pb, 210Bi, and 210Po in natural seawater, lake water, and rainwater can be finished within 2 months. The preliminary results in in situ water samples validated our protocol, with favourable recoveries for all three nuclides, and revealed the potential application of the 210Bi–210Pb pair to trace particle cycling in seawater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rigaud S, Stewart G, Baskaran M et al (2015) 210Po and 210Pb distribution, dissolved-particulate exchange rates, and particulate export along the North Atlantic US GEOTRACES GA03 section. Deep-Sea Res Part II 116:60–78

    Article  CAS  Google Scholar 

  2. Bam W, Maiti K, Baskaran M et al (2020) Variability in 210Pb and 210Po partition coefficients (Kd) along the US GEOTRACES Arctic transect. Mar Chem 219:103749

  3. Yang W, Guo L, Chuang C-Y et al (2013) Adsorption characteristics of 210Pb, 210Po and 7Be onto micro-particle surfaces and the effects of macromolecular organic compounds. Geochim Cosmochim Acta 107:47–64

    Article  CAS  Google Scholar 

  4. Lin P, Xu C, Xing W et al (2021) Molecular level characterization of diatom and coccolithophore-associated biopolymers that are binding 210Pb and 210Po in seawater. Front Mar Sci 8: 703503

  5. Verdeny E, Masqué P, Garcia-Orellana J et al (2009) POC export from ocean surface waters by means of 234Th/238U and 210Po/210Pb disequilibria: A review of the use of two radiotracer pairs. Deep-Sea Res Part II 56(18):1502–1518

    Article  CAS  Google Scholar 

  6. Yang W, Zhao X, Guo L et al (2021) Utilization of soot and 210Po-210Pb disequilibria to constrain POC fluxes in the northeastern South China Sea. Front Mar Sci 8:694428

  7. Chai Y, Urban NR (2004) 210Po and 210Pb distributions and residence times in the nearshore region of Lake Superior. J Geophys Res 109:C10S07

  8. Baskaran M, Krupp K (2021) Novel application of 210Po-210Pb disequilibria to date snow, melt pond, ice core and ice-rafted sediments in the Arctic Ocean. Front Mar Sci 8:692631

  9. Kim SH, Hong GH (2019) On the role of 210Bi in the apparent disequilibrium of 210Pb-210Po at sea. J Environ Radioact 208–209:106024

  10. Harada K, Burnett WC, Larock PA (1989) Polonium in Florida groundwater and its possible relationship to the sulfur cycle and bacteria. Geochim Cosmochim Acta 53(1):143–150

    Article  CAS  Google Scholar 

  11. Narita H, Harada K, Burnett WC et al (1989) Determination of 210Pb, 210Bi and 210Po in natural waters and other materials by electrochemical separation. Talanta 36(9):925–929

    Article  CAS  Google Scholar 

  12. Nozaki Y, Thomson J, Turekian KK (1976) The distribution of 210Pb and 210Po in the surface waters of the Pacific Ocean. Earth Planet Sci Lett 32(2):304–312

    Article  CAS  Google Scholar 

  13. Bacon MP, Spencer DW, Brewer PG (1976) 210Pb/226Ra and 210Po/210Pb disequilibria in seawater and suspended particulate matter. Earth Planet Sci Lett 32:277–296

    Article  CAS  Google Scholar 

  14. Roca-Martí M, Puigcorbé V, Castrillejo M et al (2021) Quantifying 210Po/210Pb disequilibrium in seawater: A comparison of two precipitation methods with differing results. Front Mar Sci 8: 684484

  15. Zhong Q, Puigcorbé V, Sanders C et al (2020) Analysis of 210Po, 210Bi, and 210Pb in atmospheric and oceanic samples by simultaneously auto-plating 210Po and 210Bi onto a nickel disc. J Environ Radioact 220–221: 106301

  16. Tang Y, Stewart G, Lam PJ et al (2017) The influence of particle concentration and composition on the fractionation of 210Po and 210Pb along the North Atlantic GEOTRACES transect GA03. Deep-Sea Res Part I 128:42–54

    Article  CAS  Google Scholar 

  17. Fang Z, Yang W, Zhang X et al (2013) Sedimentation and lateral transport of 210Pb over the East China Sea Shelf. J Radioanal Nucl Chem 298:739–748

    Article  CAS  Google Scholar 

  18. Baskaran M, Murphy DJ, Santschi PH et al (1993) A method for rapid in situ extraction and laboratory determination of Th, Pb, and Ra isotopes from large volumes of seawater. Deep-Sea Res Part I 40(4):849–865

    Article  CAS  Google Scholar 

  19. Rigaud S, Puigcorbé V, Cámara-Mor P et al (2013) A methods assessment and recommendations for improving calculations and reducing uncertainties in the determination of 210Po and 210Pb activities in seawater. Limnol Oceanogr Meth 11:561–571

    Article  CAS  Google Scholar 

  20. Ma H, Yang W, Zhang L et al (2017) Utilizing 210Po deficit to constrain particle dynamics in mesopelagic water, western South China Sea. Geochem Geophys Geosys 18(4):1594–1607

    Article  Google Scholar 

  21. Biggin CD, Cook GT, Mackenzie AB et al (2002) Time-efficient method for the determination of 210Pb, 210Bi, and 210Po activities in seawater using liquid scintillation spectrometry. Anal Chem 74(3):671–677

    Article  CAS  Google Scholar 

  22. Wang J, Li X, Guo M et al (2018) Preparation of BiOCl/porous titanium-hydroxyapatite and its degradation properties for acetaldehyde. Acta Silic Sin 46(05):715–722 (in Chinese)

    CAS  Google Scholar 

  23. Nevissi AE (1991) Measurement of 210Pb, 210Bi, and 210Po in environmental samples. J Radioanal Nucl Chem 148(1):121–131

    Article  CAS  Google Scholar 

  24. Marley NA, Gaffney JS, Orlandini KA et al (1999) An improved method for the separation of 210Bi and 210Po from 210Pb by using solid-phase extraction disk membranes: Environmental applications. Radiochim Acta 85(1–2):71–78

    Article  CAS  Google Scholar 

  25. Waples JT (2020) Measuring 210Bi, its parent, and daughter in aquatic systems. Limnol Oceanogr Meth 18(4):148–162

    Article  CAS  Google Scholar 

  26. Church TM, Hussain N, Ferdelman TG et al (1994) An efficient quantitative technique for the simultaneous analyses of radon daughters 210Pb, 210Bi and 210Po. Talanta 41(2):243–249

    Article  CAS  Google Scholar 

  27. Šešlak B, Vukanac I, Kandić A et al (2017) Determination of 210Pb by direct gamma-ray spectrometry, beta counting via 210Bi and alpha-particle spectrometry via 210Po in coal, slag and ash samples from thermal power plant. J Radioanal Nucl Chem 311:719–726

    Article  Google Scholar 

  28. Kwon E, Chae J-S, Kim Y-J (2019) Determination of 210Pb by measurement of 210Pb and its progenies using a liquid scintillation counter. J Radioanal Nucl Chem 322:1431–1436

    Article  CAS  Google Scholar 

  29. Flynn WW (1968) The determination of low levels of 210Po in environmental materials. Analy Chim Acta 43:221–227

    Article  CAS  Google Scholar 

  30. Fleer AP, Bacon MP (1984) Determination of 210Pb and 210Po in seawater and marine particulate matter. Nucl Instr Meth Phys Res 223(2–3):243–249

    Article  CAS  Google Scholar 

  31. Yang W (2005) Marine Biogeochemistry of 210Po and 210Pb and Their Implications Regarding the Cycling and Export of Particles. PhD thesis, Xiamen University, Xiamen (in Chinese with English abstract)

  32. Xarchoulakos DC, Kehagia K (2019) A study of various self-deposition solutions for 210Po analysis in tap water. J Radioanal Nucl Chem 319(1):419–424

    Article  CAS  Google Scholar 

  33. Yang W, Guo L, Chuang C-Y et al (2015) Influence of organic matter on the adsorption of 210Pb, 210Po and 7Be and their fractionation on nanoparticles in seawater. Earth Planet Sci Lett 423:193–201

    Article  CAS  Google Scholar 

  34. Tokieda T, Narita H, Harada K et al (1994) Sequential and rapid determination of 210Po, 210Bi and 210Pb in natural waters. Talanta 41(12):2079–2085

    Article  CAS  Google Scholar 

  35. Younes A, Alliot C, Mokili M et al (2018) Is 210Po a good indicator for anthropogenic radioactivity? Cancer Biother Radiopharm 33(8):356–360

    Article  CAS  Google Scholar 

  36. Younes A, Montavon G, Alliot C et al (2014) A route for 210Po production from alpha-particle irradiated 209Bi target. Radiochim Acta 102(8):681–689

    Article  CAS  Google Scholar 

  37. Ulrich HJ, Degueldre C (1993) The sorption of 210Pb, 210Bi and 210Po on montmorillonite: A study with emphasis on reversibility aspects and on the effect of the radioactive decay of adsorbed nuclides. Radiochim Acta 62:81–90

    Article  CAS  Google Scholar 

  38. Knight LJ, Turner A (2020) Particle-water interactions of bismuth under simulated estuarine conditions. Chemosphere 251:126400

  39. Milazzo G, Caroli S, Sharma VK (1978) Tables of standard electrode potentials. J Electrochem Soc 125:261C

    Article  Google Scholar 

  40. Younes A, Alliot C, Ali JS et al (2020) Production of polonium from bismuth and purification using TBP resin and Sr resin. J Radioanal Nucl Chem 324:823–828

    Article  CAS  Google Scholar 

  41. Younes A, Alliot C, Mokili B et al (2017) Solvent extraction of polonium(IV) with tributylphosphate (TBP). Solv Extract Ion Exch 35(2):77–90

    Article  CAS  Google Scholar 

  42. Ram R, Vaughan J, Etschmann B et al (2019) The aqueous chemistry of polonium (Po) in environmental and anthropogenic processes. J Hazard Mater 380:120725

  43. Blanchard RL (1966) Rapid determination of 210Pb and 210Po in environmental samples by deposition on nickel. Anal Chem 38(2):1–7

    Article  Google Scholar 

  44. Smith JD, Hamilton TF (1984) Improved technique for recovery and measurement of 210Po from environmental materials. Anal Chim Acta 160:69–77

    Article  CAS  Google Scholar 

  45. Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Proc Biochem 40(3–4):997–1026

    Article  CAS  Google Scholar 

  46. Wang Z, Yang W, Chen M et al (2014) Intra-Annual Deposition of Atmospheric 210Pb, 210Po and the Residence Times of Aerosol in Xiamen. China Aerosol Air Qual Res 14(5):1402–1410

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank X Zhao and N Feng for their help during sampling. This study was financially supported by the National Natural Science Foundation of China (42076030 and 41476061 awarded to W.Y.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weifeng Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, J., Yang, W., Chen, M. et al. Auto-deposition of 210Bi and 210Po on nickel discs and their application in the analysis of natural waters. J Radioanal Nucl Chem 331, 1039–1049 (2022). https://doi.org/10.1007/s10967-021-08157-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08157-1

Keywords

Navigation