Skip to main content
Log in

Europium(III) removal from aqueous solution using citric acid modified alkalized Mxene as an adsorbent

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Effective removal of radioactive nuclides from industrial activities by safe and stable reusable adsorbents has attracted researchers’ attention. Mxene, possesses the unique layered structure and the existence of terminal groups on its surface (–OH, –O, –F), is very suitable for further modification to obtain extraordinary physical properties. This work, firstly, modified alkalized Ti3C2Tx Mxene (Alk-Ti3C2Tx) by taking citric acid (CA) who belonged to a surfactant to acquire CA-Alk-Ti3C2Tx composite with rich carboxyl and hydroxyl functional groups. Under optimized conditions, the material exhibited a maximum uptake capacity reaching 117.87 mg/g which demonstrated the potential of applying in repairing damaged aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhang P, Wang L, Yuan L-Y, Lan J-H, Chai Z-F, Shi W-Q (2019) Sorption of Eu(III) on MXene-derived titanate structures: the effect of nano-confined space. Chem Eng J 370:1200–1209. https://doi.org/10.1016/j.cej.2019.03.286

    Article  CAS  Google Scholar 

  2. Xu B, Zhu Y, Liu H, Jin Z, Chen T (2016) The kinetic and thermodynamic adsorption of Eu(III) on synthetic maghemite. J Mol Liq 221:171–178. https://doi.org/10.1016/j.molliq.2016.05.055

    Article  CAS  Google Scholar 

  3. Zhang N, Peng W, Guo H, Wang H, Li Y, Liu J, Zhang S, Mei P, Hayat T, Sun Y (2019) Fabrication of porous carbon and application of Eu(III) removal from aqueous solutions. J Mol Liq 280:34–39. https://doi.org/10.1016/j.molliq.2019.01.156

    Article  CAS  Google Scholar 

  4. Yang Q, Wang Y, Yang J, Yin J, Liu D, Liu N, Wang R, Sun D, Li X, Jiang J (2021) An anionic potassium-organic framework for selective removal of uranyl ions. Dalton Trans 50(24):8314–8321. https://doi.org/10.1039/d1dt00822f

    Article  CAS  PubMed  Google Scholar 

  5. Ezzat A, Mahmoud MR, Soliman MA, Saad EA, Kandil A (2017) Evaluation of sorptive flotation technique for enhanced removal of radioactive Eu(III) from aqueous solutions. Radiochim Acta 105(3):205–213. https://doi.org/10.1515/ract-2016-2618

    Article  CAS  Google Scholar 

  6. Guo Z, Li Y, Pan S, Xu J (2015) Fabrication of Fe3O4@cyclodextrin magnetic composite for the high-efficient removal of Eu(III). J Mol Liq 206:272–277. https://doi.org/10.1016/j.molliq.2015.02.034

    Article  CAS  Google Scholar 

  7. Hu B, Hu Q, Li X, Pan H, Tang X, Chen C, Huang C (2017) Rapid and highly efficient removal of Eu(III) from aqueous solutions using graphene oxide. J Mol Liq 229:6–14. https://doi.org/10.1016/j.molliq.2016.12.030

    Article  CAS  Google Scholar 

  8. Ciopec M, Gabor A, Davidescu CM, Negrea A, Negrea P, Duteanu N (2020) Eu(III) removal by tetrabutylammonium di-hydrogen phosphate (TBAH2P) functionalized polymers. Arab J Chem 13(1):3534–3545. https://doi.org/10.1016/j.arabjc.2018.12.005

    Article  CAS  Google Scholar 

  9. Guo DD, Li B, Deng ZP, Huo LH, Gao S (2021) A rational design of layered metal-organic framework towards high-performance adsorption of hazardous organic dye. Dalton Trans 50(22):7818–7825. https://doi.org/10.1039/d0dt04174b

    Article  CAS  PubMed  Google Scholar 

  10. Benalia MC, Youcef L, Bouaziz MG, Achour S, Menasra H (2021) Removal of heavy metals from industrial wastewater by chemical precipitation: mechanisms and sludge characterization. Arab J Sci Eng. https://doi.org/10.1007/s13369-021-05525-7

    Article  Google Scholar 

  11. Rohani R, Yusoff II, Khairul Zaman N, Mahmood Ali A, Rusli NAB, Tajau R, Basiron SA (2021) Ammonia removal from raw water by using adsorptive membrane filtration process. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2021.118757

    Article  Google Scholar 

  12. Xu Q, Zhou Q, Pan M, Dai L (2020) Interaction between chlortetracycline and calcium-rich biochar: Enhanced removal by adsorption coupled with flocculation. Chem Eng J. https://doi.org/10.1016/j.cej.2019.122705

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ren Y, Han Y, Lei X, Lu C, Liu J, Zhang G, Zhang B, Zhang Q (2020) A magnetic ion exchange resin with high efficiency of removing Cr (VI). Colloids Surf A Physicochemical Eng Asp. https://doi.org/10.1016/j.colsurfa.2020.125279

    Article  Google Scholar 

  14. Ge H, Wang C, Liu S, Huang Z (2016) Synthesis of citric acid functionalized magnetic graphene oxide coated corn straw for methylene blue adsorption. Bioresour Technol 221:419–429. https://doi.org/10.1016/j.biortech.2016.09.060

    Article  CAS  PubMed  Google Scholar 

  15. Chen Y-G, Sun Z, Ye W-M, Cui Y-J (2017) Adsorptive removal of Eu(III) from simulated groundwater by GMZ bentonite on the repository conditions. J Radioanal Nucl Chem 311(3):1839–1847. https://doi.org/10.1007/s10967-017-5173-6

    Article  CAS  Google Scholar 

  16. Liao Z, Ma M, Tong Z, Bi Y, Chung KL, Qiao M, Ma Y, Ma A, Wu G, Zhong X, Sun R (2021) Fabrication of one-dimensional CoFe2/C@MoS2 composites as efficient electromagnetic wave absorption materials. Dalton Trans 50(33):11640–11649. https://doi.org/10.1039/d1dt01915e

    Article  CAS  PubMed  Google Scholar 

  17. Liu Y, Wang N, Sun Z, Han Y, Xu J, Xu Y, Wu J, Meng H, Zhang X (2021) Selective adsorption of malachite green (MG) and fuchsin acid (FA) by ZIF-67 hybridized polyvinylidene fluoride (PVDF) membranes. Dalton Trans 50(25):8927–8937. https://doi.org/10.1039/d1dt01000j

    Article  CAS  PubMed  Google Scholar 

  18. Zhang P, Wang L, Du K, Wang S, Huang Z, Yuan L, Li Z, Wang H, Zheng L, Chai Z, Shi W (2020) Effective removal of U(VI) and Eu(III) by carboxyl functionalized MXene nanosheets. J Hazard Mater 396:122731. https://doi.org/10.1016/j.jhazmat.2020.122731

    Article  CAS  PubMed  Google Scholar 

  19. Anasori B, Lukatskaya MR, Gogotsi Y (2017) 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater. https://doi.org/10.1038/natrevmats.2016.98

    Article  Google Scholar 

  20. Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y (2017) Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater 29(18):7633–7644. https://doi.org/10.1021/acs.chemmater.7b02847

    Article  CAS  Google Scholar 

  21. Ghidiu M, Lukatskaya MR, Zhao MQ, Gogotsi Y, Barsoum MW (2014) Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 516(7529):78–81. https://doi.org/10.1038/nature13970

    Article  CAS  PubMed  Google Scholar 

  22. Li G, Tan L, Zhang Y, Wu B, Li L (2017) Highly efficiently delaminated single-layered MXene nanosheets with large lateral size. Langmuir 33(36):9000–9006. https://doi.org/10.1021/acs.langmuir.7b01339

    Article  CAS  PubMed  Google Scholar 

  23. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2. Adv Mater 23(37):4248–4253. https://doi.org/10.1002/adma.201102306

    Article  CAS  PubMed  Google Scholar 

  24. Zhang J, Kong N, Hegh D, Usman KAS, Guan G, Qin S, Jurewicz I, Yang W, Razal JM (2020) Freezing titanium carbide aqueous dispersions for ultra-long-term storage. ACS Appl Mater Interfaces 12(30):34032–34040. https://doi.org/10.1021/acsami.0c06728

    Article  CAS  PubMed  Google Scholar 

  25. Peng Q, Guo J, Zhang Q, Xiang J, Liu B, Zhou A, Liu R, Tian Y (2014) Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. J Am Chem Soc 136(11):4113–4116. https://doi.org/10.1021/ja500506k

    Article  CAS  PubMed  Google Scholar 

  26. Lei H, Hao Z, Chen K, Chen Y, Zhang J, Hu Z, Song Y, Rao P, Huang Q (2020) Insight into adsorption performance and mechanism on efficient removal of methylene blue by accordion-like V2CTx MXene. J Phys Chem Lett 11(11):4253–4260. https://doi.org/10.1021/acs.jpclett.0c00973

    Article  CAS  PubMed  Google Scholar 

  27. Li S, Wang L, Peng J, Zhai M, Shi W (2019) Efficient thorium(IV) removal by two-dimensional Ti2CTx MXene from aqueous solution. Chem Eng J 366:192–199. https://doi.org/10.1016/j.cej.2019.02.056

    Article  CAS  Google Scholar 

  28. Wang L, Yuan L, Chen K, Zhang Y, Deng Q, Du S, Huang Q, Zheng L, Zhang J, Chai Z, Barsoum MW, Wang X, Shi W (2016) Loading actinides in multilayered structures for nuclear waste treatment: the first case study of uranium capture with vanadium carbide MXene. ACS Appl Mater Interfaces 8(25):16396–16403. https://doi.org/10.1021/acsami.6b02989

    Article  CAS  PubMed  Google Scholar 

  29. Zhang P, Wang L, Huang Z, Yu J, Li Z, Deng H, Yin T, Yuan L, Gibson JK, Mei L, Zheng L, Wang H, Chai Z, Shi W (2020) Aryl diazonium-assisted amidoximation of MXene for boosting water stability and uranyl sequestration via electrochemical sorption. ACS Appl Mater Interfaces 12(13):15579–15587. https://doi.org/10.1021/acsami.0c00861

    Article  CAS  PubMed  Google Scholar 

  30. Hwang SK, Kang S-M, Rethinasabapathy M, Roh C, Huh YS (2020) MXene: an emerging two-dimensional layered material for removal of radioactive pollutants. Chem Eng J. https://doi.org/10.1016/j.cej.2020.125428

    Article  Google Scholar 

  31. Zhang H, Wang L, Chen Q, Li P, Zhou A, Cao X, Hu Q (2016) Preparation, mechanical and anti-friction performance of MXene/polymer composites. Mater Des 92:682–689. https://doi.org/10.1016/j.matdes.2015.12.084

    Article  CAS  Google Scholar 

  32. Jimmy J, Kandasubramanian B (2020) Mxene functionalized polymer composites: Synthesis and applications. Eur Polymer J. https://doi.org/10.1016/j.eurpolymj.2019.109367

    Article  Google Scholar 

  33. Lin B, Yuen ACY, Li A, Zhang Y, Chen TBY, Yu B, Lee EWM, Peng S, Yang W, Lu HD, Chan QN, Yeoh GH, Wang CH (2020) MXene/chitosan nanocoating for flexible polyurethane foam towards remarkable fire hazards reductions. J Hazard Mater 381:120952. https://doi.org/10.1016/j.jhazmat.2019.120952

    Article  CAS  PubMed  Google Scholar 

  34. Wang H, Zhang J, Wu Y, Huang H, Li G, Zhang X, Wang Z (2016) Surface modified MXene Ti3C2 multilayers by aryl diazonium salts leading to large-scale delamination. Appl Surf Sci 384:287–293. https://doi.org/10.1016/j.apsusc.2016.05.060

    Article  CAS  Google Scholar 

  35. Zhao X, Vashisth A, Blivin JW, Tan Z, Holta DE, Kotasthane V, Shah SA, Habib T, Liu S, Lutkenhaus JL, Radovic M, Green MJ (2020) pH, Nanosheet Concentration, and Antioxidant Affect the Oxidation of Ti3C2Tx and Ti2CTx MXene Dispersions. Adv Mater Interfaces. https://doi.org/10.1002/admi.202000845

    Article  Google Scholar 

  36. Rasool K, Helal M, Ali A, Ren CE, Gogotsi Y, Mahmoud KA (2016) Antibacterial activity of Ti(3)C(2)Tx MXene. ACS Nano 10(3):3674–3684. https://doi.org/10.1021/acsnano.6b00181

    Article  CAS  PubMed  Google Scholar 

  37. Namvari M, Namazi H (2014) Synthesis of magnetic citric-acid-functionalized graphene oxide and its application in the removal of methylene blue from contaminated water. Polym Int 63(10):1881–1888. https://doi.org/10.1002/pi.4769

    Article  CAS  Google Scholar 

  38. Khan AR, Husnain SM, Shahzad F, Mujtaba-Ul-Hassan S, Mehmood M, Ahmad J, Mehran MT, Rahman S (2019) Two-dimensional transition metal carbide (Ti3C2Tx) as an efficient adsorbent to remove cesium (Cs(+)). Dalton Trans 48(31):11803–11812. https://doi.org/10.1039/c9dt01965k

    Article  CAS  PubMed  Google Scholar 

  39. Karthikeyan P, Ramkumar K, Pandi K, Fayyaz A, Meenakshi S, Park CM (2021) Effective removal of Cr(VI) and methyl orange from the aqueous environment using two-dimensional (2D) Ti3C2Tx MXene nanosheets. Ceram Int 47(3):3692–3698. https://doi.org/10.1016/j.ceramint.2020.09.221

    Article  CAS  Google Scholar 

  40. Zhao Y, Liu J, Wu Y, Wang F (2017) Proton conductive Pt-Co nanoparticles anchoring on citric acid functionalized graphene for efficient oxygen reduction reaction. J Power Sources 360:528–537. https://doi.org/10.1016/j.jpowsour.2017.06.046

    Article  CAS  Google Scholar 

  41. Zhao D, Zhao L, Zhu C, Tian Z, Shen X (2009) Synthesis and properties of water-insoluble β-cyclodextrin polymer crosslinked by citric acid with PEG-400 as modifier. Carbohydr Polym 78(1):125–130. https://doi.org/10.1016/j.carbpol.2009.04.022

    Article  CAS  Google Scholar 

  42. Wang S, Liu Y, Lü Q-F, Zhuang H (2020) Facile preparation of biosurfactant-functionalized Ti2CTX MXene nanosheets with an enhanced adsorption performance for Pb(II) ions. J Mol Liq. https://doi.org/10.1016/j.molliq.2019.111810

    Article  Google Scholar 

  43. Fard AK, McKay G, Chamoun R, Rhadfi T, Preud’Homme H, Atieh MA (2017) Barium removal from synthetic natural and produced water using MXene as two dimensional (2-D) nanosheet adsorbent. Chem Eng J 317:331–342. https://doi.org/10.1016/j.cej.2017.02.090

    Article  CAS  Google Scholar 

  44. Du Y, Yu B, Wei L, Wang Y, Zhang X, Ye S (2019) Efficient removal of Pb(II) by Ti3C2Tx powder modified with a silane coupling agent. J Mater Sci 54(20):13283–13297. https://doi.org/10.1007/s10853-019-03814-z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.11375084), Hunan Provincial Innovation Foundation for Postgraduate (No.193YXC009), and Natural Science Foundation of Hunan Province (No.2021JJ50092).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Jun Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Liu, H.J., Xie, L. et al. Europium(III) removal from aqueous solution using citric acid modified alkalized Mxene as an adsorbent. J Radioanal Nucl Chem 331, 1063–1073 (2022). https://doi.org/10.1007/s10967-021-08154-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08154-4

Keywords

Navigation