Skip to main content
Log in

Estimation of natural radioactivity and assessment of radiation hazard indices in soil samples of Uttara Kannada district, Karnataka, India

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The prime objective of this study is to estimate the natural radioactivity and their associated radiological hazards in soil samples of Uttara Kannada district having different geological conditions. The 226Ra, 232Th and 40K activities were estimated using HPGe detector based gamma ray spectrometer. The average 226Ra, 232Th and 40K activity concentrations are 36.13 ± 0.96, 48.47 ± 1.26 and 415.76 ± 6.83 Bq kg−1 respectively. The mean annual effective dose equivalent value was found to be 0.40 mSv y−1 and is less than the ICRP proposed value of 1 mSv y−1. The radiological hazard indices were computed and compared with internationally agreed values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. UNSCEAR (2010) Sources and effects of ionizing radiation. UNSCEAR 2010 report. United Nations Publication

    Google Scholar 

  2. Ahmet SA, Seref T, Ugur FA, Baykan UN, Ahmet MK (2013) Natural radioactivity, radon exhalation rates and indoor radon concentration of some granite samples used a construction material in Turkey. Radiat Prot Dosim 157:105–111

    Article  Google Scholar 

  3. Tufail M, Asghar M, Akram M, Javied S, Khan K, Mujahid SA (2013) Measurement of natural radioactivity in soil from Peshawar basin of Pakistan. J Radioanal Nucl Chem 298:1085–1096

    Article  CAS  Google Scholar 

  4. Belvermis M, Kılıc O, Cotuk Y, Topcuoglu S (2010) The effects of physicochemical properties on gamma emitting natural radionuclide levels in the soil profile of Istanbul. Environ Monit Assess 163:15–26

    Article  Google Scholar 

  5. Patra AC, Sahoo SK, Tripathi RM, Puranik VD (2013) Distribution of radionuclides in surface soils, Singhbhum Shear Zone, India, and associated dose. Environ Monit Assess 185:7833–7843

    Article  CAS  PubMed  Google Scholar 

  6. Kabir KA, Islam SM, Rahman M (2009) Distribution of radionuclides in surface soil and bottom sediment in the district of Jessori, Bangladesh and evaluation of radiation hazard. J Bangladesh Acad Sci 33:117–130

    Article  CAS  Google Scholar 

  7. Shahrokhi A, Kovacs T (2021) Radiological survey on radon entry path in an underground mine and implementation of an optimized mitigation system. Environ Sci Eur 33:66–80

    Article  CAS  Google Scholar 

  8. Adelikhah M, Shahrokhi A, Imani M, Chalupnik S, Kovács T (2021) Radiological assessment of indoor radon and thoron concentrations and indoor radon map of dwellings in mashhad. Iran Int J Environ Res Public Health 18:141–156

    Article  CAS  Google Scholar 

  9. Akbar A, Asley K, Şeref T, Fatemeh M (2020) Radiation hazards and natural radioactivity levels in surface soil samples from dwelling areas of North Cyprus. J Radioanal Nucl Chem 324:203–210

    Article  Google Scholar 

  10. Filgueiras RA, Silva AX, Ribeiro FCA, Lauria DC, Viglio EP (2019) Baseline, mapping and dose estimation of natural radioactivity in soils of the Brazilian state of Alagoas. Radiat Phys Chem 167:108332–108338

    Article  Google Scholar 

  11. Al-Ghamdi A (2019) Health risk assessment of natural background radiation in the soil of Eastern province, Saudi Arabia. J Radiat Res and Appl Sci 12:219–225

    Google Scholar 

  12. Srilatha MC, Rangaswamy DR, Sannappa J (2014) Measurement of natural radioactivity and radiation hazard assessment in the soil samples of Ramanagara and Tumkur districts, Karnataka, India. J Radioanal Nucl Chem 303:993–1003

    Article  Google Scholar 

  13. ICRP 39 (1984) International commission on radiological protection, principles for limiting exposure of the public to natural sources of radiation. Perganon, Oxford

    Google Scholar 

  14. Suresh S, Rangaswamy DR, Srinivasa E, Sannappa J (2020) Measurement of radon concentration in drinking water and natural radioactivity in soil and their radiological hazards. J Radiat Res Appl Sci 13:12–26

    Article  Google Scholar 

  15. Srinivasa E, Rangaswamy DR, Sannappa J (2019) Assessment of radiological hazards and effective dose from natural radioactivity in rock samples of Hassan district, Karnataka. India Environ Earth Sci 78:431

    Article  Google Scholar 

  16. Morteza I, Mohammademad A, Amin S, Ghazaleh A, Yadollahi A, Erika K, Toth-Bodrogi E, Tibor K (2021) Natural radioactivity and radiological risks of common building materials used in Semnan Province dwellings. Iran Environ Sci and Poll Res 28:41492–41503

    Article  Google Scholar 

  17. Shahrokhi A, Adelikhah M, Chalupnik S, Kocsis E, Toth-Bodrogi E, Kovács T (2020) Radioactivity of building materials in Mahallat, Iran–an area exposed to a high level of natural background radiation-attenuation of external radiation doses. Materiales De Construcción 70:e233

    Article  CAS  Google Scholar 

  18. Somsavath L, Giang TTP, Thang DD, Ngoc-TL NKK, Sounthone S, Hai-Nam T, Van LB (2020) Natural radioactivity measurement and radiological hazard evaluation in surface soils in a gold mining area and surrounding regions in Bolikhamxay province, Laos. J Radioanal Nucl Chem 326:997–1007

    Article  Google Scholar 

  19. Bajoga A, Al-Dabbous A, Abdullahi A, Alazemi N, Bachama Y, Alaswad S (2019) Evaluation of elemental concentrations of uranium, thorium and potassium in topsoils from Kuwait. Nucl Eng Technol 51(6):1636–2164

    Article  Google Scholar 

  20. Manić V, Manić G, Radojković B, Vučić D, Nikezić D, Krstić D (2019) Radioactivity of soil in the region of the town of Niš, Serbia. Radiat Prot Dosimetry 25:287–289

    Google Scholar 

  21. UNSCEAR (1993) United Nations scientific committee on the effects of atomic radiation. Forty-second session of UNSCEAR, United Nations, New York

    Google Scholar 

  22. UNSCEAR (2008) United Nations scientific committee on the effects of atomic radiation, sources, and biological effects of ionizing radiation. Report to the general assembly with scientific annexes, United Nations, New York

    Google Scholar 

  23. UNSCEAR (2000) United Nations scientific committee of the effect of atomic radiation. Sources, effects and risks of ionizing radiations, United Nations, New York

    Google Scholar 

  24. Shahrokhi A, Adelikhah M, Chałupnik S, Kovács T (2021) Multivariate statistical approach on distribution of natural and anthropogenic radionuclides and associated radiation indices along the north-western coastline of Aegean Sea, Greece. Mar Pollut Bullet 163:112009

    Article  CAS  Google Scholar 

  25. Shahrokhi A, Adelikhah M, Imani M, Tibor K (2021) A brief radiological survey and associated occupational exposure to radiation in an open pit slate mine in Kashan. Iran J Radioanal Nucl Chem 329:141–148

    Article  CAS  Google Scholar 

  26. Krishnan MS (1982) Geology of India and Burma, 6th edn. Batra Art Printers, New Delhi

    Google Scholar 

  27. Adelikhah M, Shahrokhi A, Chalupnik S, Tóth-Bodrogi E, Kovács T (2020) High level of natural ionizing radiation at a thermal bath in Dehloran Iran. Heliyon 6:e04297

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sannappa J, Chandrashekera MS, Sathish LA, Paramesh L, Venkataramaiah P (2003) Study of background radiation dose in Mysore city, Karnataka State, India. Radiat Meas 37:55–65

    Article  CAS  Google Scholar 

  29. Beretka J, Mathew PJ (1985) Natural radioactivity of Australian building materials, industrial wastes and by products. Health Phys 48:87–95

    Article  CAS  PubMed  Google Scholar 

  30. Ramasamy V, Suresh G, Meenakshisundaram V, Ponnusamy V (2011) Horizontal and vertical characterization of radionuclides and minerals in river sediments. Appl Radiat Isot 69:184–195

    Article  CAS  PubMed  Google Scholar 

  31. European Commission (EC) (1999) Radiological protection principles concerning the natural radioactivity of building materials. Radiation Protection 112, Directorate General Environment. Nuclear Safety and Civil Protection, European Commission

  32. Taskin H, Karavus M, Ay P, Topuzoglu A, Hidiroglu S, Karahan G (2009) Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. J Environ Radioact 100:49–53

    Article  CAS  PubMed  Google Scholar 

  33. ICRP (1990) International Commission on radiological protection. Recommendations of the international commission on radiological protection. Publ 60 Ann 21:1–3

    Google Scholar 

  34. ICRP (2007) International Commission on radiological protection: annals of the ICRP publication 103. Elsevier, pp 2–4

    Google Scholar 

  35. Prasad Y, Prasad G, Gussian GS, Badoni M, Ramola RC (2007) Environmental gamma dose rate measurements in Himalaya region. Proceedings-mitigation of pollutions for clean environment (NSE-15) 492

  36. Sannappa J, Ningappa C, Narasimha PKN (2010) Natural radioactivity levels in granite regions of Karnataka state. Indian J Pure Appl Phys 48:209–215

    Google Scholar 

  37. Ningappa C, Sannappa J, Karunakara N (2008) Study on radionuclides in granite quarries of Bangalore Rural District, Karnataka, India. Radiat Prot Dosim 131:495–502

    Article  CAS  Google Scholar 

  38. Narayan Y, Somashekarappa HM, Karunakara N, Avadhani DN, Mahesh HM, Siddappa K (2001) Natural radioactivity in the soil samples of Coastal Karnataka of South India. Health Phys 80:24–33

    Article  Google Scholar 

  39. Tabar E, Yakut H, Sac MM, Taskopru C, Ichedef M, Kus A (2017) Natural radioactivity levels and related risk assessment in soil samples from Sakarya, Turkey. J Radioanal Nucl Chem 313:249–259

    Article  CAS  Google Scholar 

  40. Baolu Y, Qiang Z, Jing Z, Zeshu L, Wenhong L, Fei T (2018) Assessment of radioactivity level and associated radiation exposure in topsoil from eastern region of Shangrao Prefecture, China. J Radioanal Nucl Chem 319:297–302

    Google Scholar 

  41. Farideh AB, Farid M, Reza F, Behnam K (2019) Distribution of natural radionuclides and assessment of the associated radiological hazards in the rock and soil samples from a high-level natural radiation area, Northern Iran. J Radioanal Nucl Chem 322:2091–2103

    Article  Google Scholar 

  42. André LCL, Dejanira CL, Fernando CAR (2020) Natural radionuclide levels and the associated radiological risks in soils from the three meso regions of Pernambuco state, Brazil. J Radioanal Nucl Chem 324:521–531

    Article  Google Scholar 

  43. Tae-Woo K, Won-Pyo P, Young-Un H, Ki Moon B, Kyunghyun K (2020) Natural and artificial radioactivity in volcanic ash soils of Jeju Island, Republic of Korea, and assessment of the radiation hazards: importance of soil properties. J Radioanal Nucl Chem 323:1113–1124

    Article  Google Scholar 

  44. Najeba FS, Zakariya AH, Shalaw ZS (2020) Environmental radioactivity levels in agricultural soil and wheat grains collected from wheat-farming lands of Koya district, Kurdistan region-Iraq. Radiat Prot Environ 42:128–137

    Google Scholar 

  45. Nickolai S, Natalia M, Ilya S, Andrey K, Elena A (2020) Natural radionuclides in bottom sediments of the saline lakes. What factors determine their concentration? Environ Earth Sci 79:168

    Article  Google Scholar 

  46. Emmanuel SJ, Dilip KD, Maxwell O, Olusegun A, Olukunle CO, Akinpelu A, Similoluwa E, Gideon AA (2020) Assessment of background radionuclides and gamma dose rate distribution in Urban-setting and its radiological significance. Scientific African 8:e00377

    Article  Google Scholar 

  47. Sahoo SK, Kierepko R, Sorimachi A, Omori Y, Ishikawa T, Tokonami S, Prasad G, Gusain GS, Ramola RC (2016) Natural radioactivity level and elemental composition of soil samples from a high background Radiation area on eastern coast of India (Odisha). Radiat Prot Dosim 171:172–178

    Article  CAS  Google Scholar 

  48. Venunathan N, Kaliprasad CS, Narayana Y (2016) Natural radioactivity in sediments and riverbank soil of Kallada River of Kerala, South India and associated radiological risk. Radiat Prot Dosim 271:271–276

    Article  Google Scholar 

  49. Manpreet K, Ajay K, Rohit M, Rosaline M, Navjeet S (2018) Assessment of primordial and anthropogenic radionuclide contents in the soil samples of lower Himalayas of Jammu and Kashmir, India. J Radioanal Nucl Chem 317:1165–1174

    Article  Google Scholar 

  50. Anamika K, Mehra R, Malik P (2019) Assessment of radiological impacts of natural radionuclides and radon exhalation rate measured in the soil samples of Himalayan foothills of Uttarakhand, India. J Radioanal Nucl Chem 323:263–274

    Article  Google Scholar 

  51. Rangaswamy DR, Srinivasa E, Srilatha MC, Sannappa J (2015) Measurement of terrestrial gamma radiation dose and evaluation of annual effective dose in Shimoga district of Karnataka state, India. Radiat Prot Environ 38:154–159

    Article  Google Scholar 

  52. International Commission on Radiological Protection (ICRP) (1991) 1990 Recommendation of the international commission on radiological protection. ICRU publication 60. Pergamon Press, Oxford

    Google Scholar 

Download references

Acknowledgements

The authors wish to express their heartfelt gratitude to M.P.E society’s Dr. M.P Karki Institute of Excellence and Research, Honnavar, for providing an instrumentation facility to conduct research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sannappa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresh, S., Rangaswamy, D.R., Sannappa, J. et al. Estimation of natural radioactivity and assessment of radiation hazard indices in soil samples of Uttara Kannada district, Karnataka, India. J Radioanal Nucl Chem 331, 1869–1879 (2022). https://doi.org/10.1007/s10967-021-08145-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08145-5

Keywords

Navigation