Skip to main content
Log in

Application of Deinococcus radiodurans in the treatment of environmental pollution by heavy metals and radionuclides

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This review thoroughly presents the recent progress of Deinococcus radiodurans, recombinant D. radiodurans and immobilized D. radiodurans as superior adsorbents to efficiently remove toxic heavy metals ions and radionuclides. Finally, a summary and prospect on the opportunities and challenges of D. radiodurans are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Zhang M, Sun X, Xu J (2020) Heavy metal pollution in the East China Sea: A review. Mar Pollut Bull 159:111473

    CAS  PubMed  Google Scholar 

  2. Selvakumar R, Ramadoss G, Mridula PM (2018) Challenges and complexities in remediation of uranium contaminated soils: A review. J Environ Radioact 192:592–603

    CAS  PubMed  Google Scholar 

  3. Dhaliwal SS, Singh J, Taneja PK (2020) Remediation techniques for removal of heavy metals from the soil contaminated through different sources: a review. Environ Sci Pollut Res Int 27(2):1319–1333

    PubMed  Google Scholar 

  4. Manobala T, Shukla SK, Rao TS (2021) Kinetic modelling of the uranium biosorption by Deinococcus radiodurans biofilm. Chemosphere 269:128722

    CAS  PubMed  Google Scholar 

  5. Sayali K, Anand B, Shree KA (2013) Bioprecipitation of uranium from alkaline waste solutions using recombinant Deinococcus radiodurans. J Hazard Mater 262:853–861

    Google Scholar 

  6. Zhou DM, Hao XZ, Xue Y (2004) Research progress on remediation technology of contaminated soil. Ecol Environ Sci 13(2):234–242

    Google Scholar 

  7. Douay F, Roussel H, Pruvot C (2008) Assessment of a remediation technique using the replacement of contaminated soils in kitchen gardens nearby a former lead smelter in Northern France. Sci Total Environ 401:29–38

    CAS  PubMed  Google Scholar 

  8. Khan FI, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manage 71:95–122

    PubMed  Google Scholar 

  9. Yao Z, Li J, Xie H (2012) Review on remediation technologies of soil contaminated by heavy metals. Procedia Environ Sci 16:722–729

    CAS  Google Scholar 

  10. Zhou DM, Deng CF (2003) Review: Electrokinetic remediation of heavy metal contaminated soil. J Agro-Environ Sci 22(4):505–508

    CAS  Google Scholar 

  11. Ke X, Li PJ, Gong ZQ (2004) Advances in flushing agents used for remediation of heavy metal-contaminated soil. Chin J Ecol 33(5):145–149

    Google Scholar 

  12. Gao GL, Zhang W, Zhou LB (2013) Advances in chemical leaching technology of heavy metal contaminated soil. Non- ferrous Metals Eng 3(1):49–52

    CAS  Google Scholar 

  13. Zhao SH, Chen ZL, Zhang TP (2013) Research progress on solidification /stabilization of heavy metal contaminated soil. Chin J Soil Sci 44(6):1531–1536

    CAS  Google Scholar 

  14. O’Day P, Vlassopoulos D (2010) Mineral-based amendments for remediation. Elements 6:375–381

    PubMed  Google Scholar 

  15. Porter SK, Scheckel KG, Impellitteri CA (2004) Toxic metals in the environment: Thermodynamic considerations for possible immobilization strategies for Pb, Cd, As, and Hg. Crit Rev Environ Sci Technol 34:495–604

    CAS  Google Scholar 

  16. Gong Y, Zhao D, Wang Q (2018) An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: Technical progress over the last decade. Water Res 147:440–460

    CAS  PubMed  Google Scholar 

  17. Derakhshan NZ, Jung MC, Kim KH (2018) Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology. Environ Geochem Health 40:927–953

    Google Scholar 

  18. Mahmood Q, Mirza N, Shaheen S (2015) Phytoremediation using algae and macrophytes. In: Ansari AA, Gill SS, Gill R (eds) Phytoremediation: Management of environmental contaminants 2: 265–289.

  19. Chaney RL, Baklanov IA (2017) Phytoremediation and phytomining: Status and promise. In: Cuypers A, Vangronsveld J (eds) Advances in Botanical Research 83: 189–221.

  20. Nahmani J, Hodson M, Black SA (2007) Review of studies performed to assess metal uptake by earthworm. Environ Pollut 145:402–424

    CAS  PubMed  Google Scholar 

  21. Tang H, Zhu J, Huang SF (2013) Research progress on application of earthworms in heavy metal pollution of soil and its remediation. Soil 45(01):17–25

    CAS  Google Scholar 

  22. Ye W, Zhou YJ, Yan SW (2019) Advancement of research on application of microbial mineralization technology in remediation of arsenic contaminated environment. Acta Pedol Sin 58(4):862–875

    Google Scholar 

  23. He F, Gao J, Pierce E (2015) In situ remediation technologies for mercury-contaminated soil. Environ Sci Pollut Res Int 22(11):8124–8147

    CAS  PubMed  Google Scholar 

  24. Guemiza K, Coudert L, Metahni S (2017) Treatment technologies used for the removal of As, Cr, Cu, PCP and/or PCDD/F from contaminated soil: A review. J Hazard Mater 333:194–214

    CAS  PubMed  Google Scholar 

  25. Qu L, Shi C (2019) Research progress of remediation technology for heavy metals in soil. China Metal Bull 09:178–179

    Google Scholar 

  26. Prakash D, Gabani P, Chandel AK (2013) Bioremediation: a genuine technology to remediate radionuclides from the environment. Microb Biotechnol 6(4):349–360

    PubMed  PubMed Central  Google Scholar 

  27. Guo ZZ, Xiao FZ, Yang Z (2018) Adsorption of Cu~ (2+) and Cr~ (6+) on Deinococcus radiodurans. Chem Res Appl 30(03):327–332

    Google Scholar 

  28. Brim H, Mcfarlan SC, Fredrickson JK (2000) Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol 18(1):85–90

    CAS  PubMed  Google Scholar 

  29. Chaturvedi R, Archana G (2014) Cytosolic expression of synthetic phytochelatin and bacterial metallothionein genes in Deinococcus radiodurans R1 for enhanced tolerance and bioaccumulation of cadmium. Biometals 27(3):471–482

    CAS  PubMed  Google Scholar 

  30. He Y, Jiang DW, Wang QR (2018) Preparation of immobilized microorganism and its ability to treat radioactive wastewater. Shanghai Environ Sci 37(06):231–234

    Google Scholar 

  31. Kim HK, Jeong SW, Yang JE (2019) Highly efficient and stable removal of arsenic by live cell fabricated magnetic nanoparticles. Int J Mol Sci 20(14):3566

    CAS  PubMed Central  Google Scholar 

  32. Yang J, Faqin D, Qunwei D (2015) Study on the adsorption behavior of radionuclide uranium by Dixococcus radiodurans. Spectrosc Spectr Anal 35(04):1010–1014

    CAS  Google Scholar 

  33. Yang J (2015) Study on the adsorption of water soluble nuclide uranium by typical microorganisms under irradiation conditionsSouthwest. University of Science and Technology

  34. Guo K, Cheng C, Chen L (2021) Uranium enrichment performence and uranium stress mechanism of Deinococcus radiodurans. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-021-08018-x

    Article  Google Scholar 

  35. Liu XL (2015) Study on the Breeding of microorganisms removing U (VI) and their interaction with U (VI). University of Science and Technology.

  36. Liang Songjun (2010) Construction of recombinant strain D. radiodurans containing phoN and its Enrichment performance of U (VI). University of South China

  37. Appukuttan D, Rao AS, Apte SK (2006) Engineering of Deinococcus radiodurans R1 for bioprecipitation of uranium from dilute nuclear waste. Appl Environ Microbiol 72(12):7873–7878

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Appukuttan D, Seetharam C, Padma N (2011) PhoN-expressing, lyophilized, recombinant Deinococcus radiodurans cells for uranium bioprecipitation. J Biotechnol 154(4):285–290

    CAS  PubMed  Google Scholar 

  39. Kulkarni S, Ballal A, Apte SK (2013) Bioprecipitation of uranium from alkaline waste solutions using recombinant Deinococcus radiodurans. J Hazard Mater 262:853–861

    CAS  PubMed  Google Scholar 

  40. Xu R, Wu K, Han H (2018) Co-expression of YieF and PhoN in Deinococcus radiodurans R1 improves uranium bioprecipitation by reducing chromium interference. Chemosphere 211:1156–1165

    CAS  PubMed  Google Scholar 

  41. Qin YL, Dong QF, Nie XQ (2016) Study on the adsorption and reduction of uranium by immobilized Deinococcus radiodurans. Funct Mater 47(06):6125–6129

    CAS  Google Scholar 

  42. Xiao FZ, He SY, Peng GW (2016) Fixation of Diplococcus radiodurans by functional magnetic carrier and its adsorption behavior and mechanism for uranium. Chin J Nonferrous Metals 26(07):1568–1575

    Google Scholar 

  43. Choi MH, Jeong SW, Shim HE (2017) Efficient bioremediation of radioactive iodine using biogenic gold nanomaterial-containing radiation-resistant bacterium, Deinococcus radiodurans R1. Chem Commun (Camb) 53(28):3937–3940

    CAS  Google Scholar 

  44. Shim HE, Yang JE, Jeong SW (2018) Silver nanomaterial-immobilized desalination systems for efficient removal of radioactive iodine species in water. Nanomater (Basel, Switzerland) 8(9):660

    Google Scholar 

  45. Raghu G, Satyanarayana SS, Kumari LS (2015) Engineered Deinococcus radiodurans R1 with NiCoT genes for bioremoval of trace cobalt from spent decontamination solutions of nuclear power reactors. Appl Microbiol Biotechnol 99(21):9203–9213

    Google Scholar 

  46. Huang T, Liu MX, Dong QF (2015) Comparative study on calstrontium biomineralization induced by different microorganisms. Geolo J China Univ 21(04):584–593

    CAS  Google Scholar 

  47. Liu MX, Dong QF (2014) Li S (2014) Study on adsorption and reduction of strontium column by immobilized Deinococcus radiodurans. Environ Sci Technol 37(06):32–37

    Google Scholar 

  48. Ding L (2019) Experimental study on the fixation of uranium in soil by Leifsonia SP. University of South China.

  49. Xu YB, Qian CX, Lu ZW (2013) Remediation of heavy metal contaminated soils by bacteria biomineralization. Chin J Environ Eng 7(7):2763–2768

    CAS  Google Scholar 

  50. Wang T (2013) Study on remediation of heavy metal contaminated soil by high-efficiency mutagens and biochar. Nankai University.

  51. Tan H, Wang C, Li H (2020) Remediation of hexavalent chromium contaminated soil by nano-FeS coated humic acid complex in combination with Cr- resistant microflora. Chemosphere 242(Mar.):125251.1-125251.10

    Google Scholar 

  52. Peng D, Wu B, Tan H (2019) Effect of multiple ironbased nanoparticles on availability of lead and iron, and micro-ecology in lead contaminated soil. Chemosphere 228:44–53

    CAS  PubMed  Google Scholar 

  53. Sorokin ND, Afanasova EN (2011) Microbial indication of soils contaminated with industrial emissions. Contemp Probl Ecol 4(5):508–512

    Google Scholar 

  54. Cheng C, Xie J, Zhu Q (2021) The reduction effect and mechanism of Deinococcus radiodurans transformed dsrA gene to uranyl ions. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-021-08038-7

    Article  Google Scholar 

  55. Luo J, Zhu Q, Li S (2021) Construction of Deino-flr-2 radiation-tolerant genetically engineered strain containing flr-2 fluoride-tolerant gene and its enrichment behavior for U (VI). J Radioanal Nucl Chem 328(3):1265–1278

    CAS  Google Scholar 

  56. Yang H (2019) Study on stability and environmental effect of microbial induced carbonate deposition in remediation of soil contaminated by violet and chromium. Yangzhou University.

Download references

Acknowledgements

This work was financially supported by the Nature Science Foundation of Hunan. Province in 2020 (2020JJ6050, 2020JJ4077).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuya He or Fangzhu Xiao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, K., Cheng, C., Chen, L. et al. Application of Deinococcus radiodurans in the treatment of environmental pollution by heavy metals and radionuclides. J Radioanal Nucl Chem 331, 655–664 (2022). https://doi.org/10.1007/s10967-021-08141-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08141-9

Keywords

Navigation