Skip to main content
Log in

Processing of Abu Dob mineralized pegmatites, Central Eastern Desert, Egypt: a study on the kinetics of dissolution process and extraction of some valuable metals

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The present work is concerned with preparing pure oxides of U, Zr, Th and REE from Abu Dob mineralized pegmatitic rock. The dissolution kinetic profiles were assigned to chemical reaction model for all interesting elements. The calculated apparent activation energy was 33.8, 23.67, 22.5, and 24.40 kJ mol−1 for U, Zr, Th, and REE respectively. Almost complete U extraction (99%) and 90.2% of Zr were first achieved using Alamine 336 at pH 0.8. Furthermore, Th was selectivily separated from REE in the raffinate solution through its precipitation using MgO followed by REE precipitation as oxalates at pH 1.1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. El Shazly M (1957) Control of tertiary ore deposition in Egypt. Chronique des mines of outer mer et de la Recherche miniere.

  2. Akaad K, El Ramly F (1960) Geological history and classification of the basement rocks of Central Eastern Desert. Geol Surv Egypt 9:24

    Google Scholar 

  3. Abu El Hassan A (1995) Geology of Gabal Abu Kharief and associated mineralization, Eastern Desert, Egypt. M. Sc. thesis, South Valley Univ., Qena, Egypt, 152.

  4. El Tahir A (1978) Relation between geology and radioactivity of some basement rocks to the north of Qena-Safaga asphaltic road, Eastern Desert Egypt, M.Sc. thesis, Al Azhar Univ Cairo Egypt, 101.

  5. Khalea F (2014) Granites of Gabal El-Dob area and associated pegmatites, Central Eastern Desert, Egypt: geochemistry and spectrometry. Nuclear Sci Scientif J 3:15–25. https://doi.org/10.21608/nssj.2014.30936

    Article  Google Scholar 

  6. Ibrahim M (1999) Occurrence of uranium and REE- bearing samarskite in the Abu Dob pegmatites, Central Eastern Desert. Proc Egyptian Acad Sci 49:77–89

    Google Scholar 

  7. Saleh G, Emad B, Abdel Kader I (2021) Geochemistry and spectrometric prospecting of uranium mineralization bearing granitic pegmatites at G. Kab El Rakab area, Central Eastern Desert, Egypt. Acta Geochima DOI:https://doi.org/10.1007/s11631-021-00456-4

  8. Raslan M, Fawzy M (2018) Mineralogy and physical upgrading of fergusonite-Y and Hf-zircon in the mineralized pegmatite of Abu Dob granite, Central Eastern Desert. Egypt TIMS Bulletin 107:52–65

    Google Scholar 

  9. Mogahed A (2020) Integration of Remote Sensing and Geophysical data for delineating potential radioactive zones in Kadabora area, Central Eastern Desert, Egypt. Damietta University, Faculty of science, Geology Department MS.C, p 235

    Google Scholar 

  10. Amer T (2001) Selective uranium recovery from the refractory multiple -oxide ore of Abu Dob, Eastern Desert, Egypt: Proceedings of 5th international conference on geochemistry Alexandria University of Egypt, pp 483–492.

  11. Amer T (2004) Separation and preparation of pure yttrium oxide from the refractory multiple-oxide ore material of Gabal Abu Dob, Eastern Desert, Egypt: Proceedingsof 6th international conference on geochemistry Alex Univ Egypt, pp 15–16 Sept 129–140.

  12. Moldoveanu G, Papangelakis V (2013) Recovery of rare earth elements adsorbed on clay minerals: II. Leaching with ammonium sulfate Hydrometallurgy 131–132:158–166

    Article  Google Scholar 

  13. Yang H, Rong Y, Han C, Tang R, Xue X, Li Y, Li Y (2016) Magnetizing roast and magnetic separation of iron in rare-earth tailings. J Cent South Univ 23:1899–1905. https://doi.org/10.1007/s11771-016-3245-3

    Article  CAS  Google Scholar 

  14. Zhou Y, Yang H, Xue X, Yuan S (2017) Separation and recovery of iron and rare earth from bayan obo tailings by magnetizing roasting and (NH4)2SO4 activation roasting. Metals 195:1–19. https://doi.org/10.3390/met7060195

    Article  CAS  Google Scholar 

  15. Amer T, El-Sheikh E, Gado M, Abu-Khoziem H, Zaki S (2018) Selective recovery of lanthanides, uranium and thorium from Rosetta monazite mineral concentrate z. Journal Separation Science and Technology 53(10):1522–1530. https://doi.org/10.1080/01496395.2017.1405039

    Article  CAS  Google Scholar 

  16. He ZY, Zhang ZY, Yu JX, Xu ZG, Xu YL, Zhou F, Chi RA (2016) Column leaching process of rare earth and aluminum from weathered crust elution-deposited rare earth ore with ammonium salts. Trans Nonferrous Met Soc China 26:3024

    Article  CAS  Google Scholar 

  17. He ZY, Zhang ZY, Chi RA, Xu ZG, Yu JX, Wu M, Bai RY (2017) Leaching hydrodynamics of weathered elution-deposited rare earth ore with ammonium salts solution. J Rare Earths 35(8):824–830

    Article  CAS  Google Scholar 

  18. Abdellah WM, Khalafalla MS, Abu Khoziem HA, El Hussaini OM (2021) Physical and chemical processes of Abu Rusheid cataclastic rocks for recovering niobium, zirconium, and uranium compounds. Physicochem Probl Miner Process 57(5):137–152

    CAS  Google Scholar 

  19. Banda R, Lee M (2015) Solvent Extraction for the Separation of Zr and Hf from Aqueous Solutions. Separation and Purification reviewer 44(3):45–65. https://doi.org/10.1080/15422119.2014.920876

    Article  CAS  Google Scholar 

  20. Wang L, Lee M (2015) Separation of Zr and Hf from sulfuric acid solutions with amine-based extractants by solvent extraction. Sep Purif Technol 142:83–89. https://doi.org/10.1016/j.seppur.2015.01.001

    Article  CAS  Google Scholar 

  21. Zhu Z, Pranolo Y, Cheng C (2015) Separation of uranium and thorium from rare earths for rare earth production – A review. Minerals Eng 77:185–196. https://doi.org/10.1016/j.mineng.2015.03.012

    Article  CAS  Google Scholar 

  22. Amaral J, Rocha L, Morais C (2013) Study of the separation of zirconium and hafnium from nitric solutions by solvent extraction. Proceedings of the International Nuclear Atlantic Conference - INAC Recife Brazil 24–29 November Brazilian Nuclear Energy Association

  23. Abdellah W (2020) Preparation of pure uranium, thorium and yttrium oxides from El-Garra El-Hamra sulfate leach liquor. J of Radiochemistry 62(3):347–358. https://doi.org/10.1134/S1066362220030078

    Article  CAS  Google Scholar 

  24. García A, Latifi M, Amini A, Chaouki J (2020) Separation of radioactive elements from rare earth element-bearing minerals. Rev Metals 10:1524. https://doi.org/10.3390/met10111524

    Article  CAS  Google Scholar 

  25. Khaleal FM, Abu KMS, Khoziem HA, Abdellah WM (2021) Separation of thorium and uranium from mica-rich schist bands concentrate occurred within the radioactive gneiss rock in Wadi Abu Rusheid area, south Eastern Desert. Egypt Radiochem J 63(5):583–594. https://doi.org/10.1134/S1066362221050052

    Article  CAS  Google Scholar 

  26. Marczenko Z (2000) Spectrophotometric determination of elements. John Wiley and Sons, Harwood, New York

    Google Scholar 

  27. Mathew K, Burger S, Ogt S, Mason P, Narayanan U (2009) Uranium assay determination using Davies and Gray titration. Processing the Eighth International Conference on Methods and Applications of Radioanalytical Chemistry (Marc Viii) Kaailua-Kona, Hawaii 5.

  28. Raslan M, Fawzy M, Abu-Khoziem A (2017) Mineralogy of mineralized pegmatite of Ras Mohamed granite, Southern Sinai. Egypt Inter J Geol Earth Environ Sci 7(1):65–80

    CAS  Google Scholar 

  29. Abu Elatta S, Abdellah W, Abu Khoziem H (2018) Mineralogy, geochemistry and leaching characteristics of the high-grade Th-U-Y zone of altered syenite at El Garra El Hamra, Southwestern Desert. Egypt Minerals Metallur Process 53(4):230–243. https://doi.org/10.19150/mmp.8600

    Article  Google Scholar 

  30. Demol J, Ho E, Senanayake G (2018) Sulfuric acid baking and leaching of rare earth elements, thorium and phosphate from a monazite concentrate: Effect of bake temperature from 200 to 800 °C. Hydrometallurgy 179:254–267. https://doi.org/10.1016/j.hydromet.2018.06.002

    Article  CAS  Google Scholar 

  31. Levenspiel O (1999) Chemical reaction engineering, 3rd edn. New York, Wiley

    Google Scholar 

  32. Hsu W, Lin M, Hsu J (2009) Dissolution of solid particles in liquid: a Shrinking core models. Int J Chem Biomole Eng 2(4):205

    CAS  Google Scholar 

  33. Sohn H (2003) Chemical reaction engineering in the chemical processing of metals and inorganic materials. Korean J Chem Eng 20(2):185. https://doi.org/10.1007/BF02705541

    Article  CAS  Google Scholar 

  34. Abu Khoziem H (2017) Recovery of Cu, REEs, U and V from Abu Zienema Poly-mineralized Carbonaceous Shale Ore Material, Southwestern Sinai. Bull Fac Sci Zagazig Univ, Egypt, p 39

    Google Scholar 

Download references

Acknowledgements

Deep appreciation to Prof. T. E. Amer for the faithful discussion during the present work's progress, valuable advices, and critical reading of the manuscript. Deep appreciation also is due to Prof. O. El Hussaini for providing the working sample. The author is greatly indebted to Dr. W. Abdellah and Dr. M. Khalafalla for their valuable advices, continuous help in accomplishing this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanaa A. Abu Khoziem.

Ethics declarations

Conflicts of interest

The present paper is an original work, and all the authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu Khoziem, H.A. Processing of Abu Dob mineralized pegmatites, Central Eastern Desert, Egypt: a study on the kinetics of dissolution process and extraction of some valuable metals. J Radioanal Nucl Chem 331, 937–951 (2022). https://doi.org/10.1007/s10967-021-08134-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08134-8

Keywords

Navigation