Skip to main content
Log in

A pilot study of indoor thoron and 212Pb concentrations in residential buildings in Ekaterinburg, Russia

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A pilot study of the concentrations of thoron and 212Pb in the air of residential premises in Ekaterinburg was carried out. The arithmetic mean of thoron concentration in the center of the room was 35.7, near the wall 85.2 Bq m−3 respectively. For rooms in the buildings constructed with monolithic and aerated concrete, the average concentration of thoron was 73 ± 17 Bq m−3, brick—19 ± 5 Bq m−3, concrete panels—16 ± 6 Bq m−3. Simultaneous measurements of the 212Pb and radon concentrations during 3–5 days in combination with long-term measurements of radon concentration allows to estimate the long-term concentration of 212Pb with an uncertainty ~ 25%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. UNSCEAR (2006) Sources and effects of ionizing radiation United Nations Scientific Committee on the effects of atomic radiation. United Nations, New York. http://www.unscear.org/docs/publications/2006/UNSCEAR_2006_Annex-E-CORR.pdf. Assessed 10 Sept 2021

  2. Ludwig T, Schäfer I, Seitz G (2008) Radiation exposure in the production and use of thoriated gas mantles. In: Proceedings of fifth international symposium on naturally occurring radioactive material (NORM V). IAEA, Vienna STI/PUB/1326: 71–79. https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1326_web.pdf. Assessed 10 Sept 2021

  3. Zhukovsky M, Ekidin A, Yarmoshenko I, Rogozina M (2011) Ecological and radiological consequences of a half century of operation of a monazite storage facility. In: Proceedings of sixth international symposium on naturally occurring radioactive material (NORM VI). IAEA, Vienna STI/PUB/1497: 91–101. https://www-pub.iaea.org/MTCD/publications/PDF/Pub1497_web.pdf. Assessed 10 Sept 2021

  4. Rogozina M, Zhukovsky M, Ekidin A, Vasyanovich M (2014) Thoron progeny size distribution in monazite storage facility. Radiat Protect Dosim 162(1–2):10–13. https://doi.org/10.1093/rpd/ncu208

    Article  CAS  Google Scholar 

  5. Zhukovsky M, Vasyanovich M, Onishchenko A, Vasilyev A (2019) Anomalously high unattached fraction of 220Rn decay products in the atmosphere of monazite storage facility. Appl Radiat Isot 151:1–6. https://doi.org/10.1016/j.apradiso.2019.05.035

    Article  CAS  PubMed  Google Scholar 

  6. Zhukovsky M, Vasyanovich M, Onishchenko A (2020) Unattached 212Pb fraction in the worker’s breathing zone at high thoron concentrations. Radiat Protect Dosim 192(2):150–153. https://doi.org/10.1093/rpd/ncaa154

    Article  CAS  Google Scholar 

  7. Zhuo W, Tokonami S, Yonehara H, Yamada Y (2002) A simple passive monitor for integrating measurements of indoor thoron concentrations. Rev Sci Instrum 73(8):2877–2881. https://doi.org/10.1063/1.1493233/

    Article  CAS  Google Scholar 

  8. Tokonami S, Takahashi H, Kobayashi Y, Zhuo W (2005) Up-to-date radon-thoron discriminative detector for a large scale survey. Rev Sci Instrum 76:3505–3509. https://doi.org/10.1063/1.2132270

    Article  CAS  Google Scholar 

  9. Rottger A, Honig A, Dersch R, Ott O, Arnold D (2010) A primary standard for activity concentration of 220Rn (thoron) in air. Appl Radiat Isot 68:1292–1296. https://doi.org/10.1016/j.apradiso.2010.01.004

    Article  CAS  PubMed  Google Scholar 

  10. Sorimachi A, Ishikawa T, Janik M, Tokonami S (2010) Quality assurance and quality control for thoron measurement at NIRS. Radiat Protect Dosim 141(4):367–370. https://doi.org/10.1093/rpd/ncq245

    Article  CAS  Google Scholar 

  11. Sabot B, Pierre S, Cassette P, Michielsen N, Bondiguel S (2015) Development of a primary thoron activity standard for the calibration of thoron measurement instruments. Radiat Protect Dosim 167(1–3):70–74. https://doi.org/10.1093/rpd/ncv221

    Article  CAS  Google Scholar 

  12. Shang B, Tschiersch J, Cui H, Xia Y (2008) Radon survey in dwellings of Gansu, China: the influence of thoron and an attempt for correction. Radiat Environ Biophys 47:367–373. https://doi.org/10.1007/s00411-008-0163-2

    Article  PubMed  Google Scholar 

  13. Zhuo W, Iida T (2001) Concentrations and deposition rates of 220Rn progeny in houses. Sci Total Environ 272:139–140. https://doi.org/10.1016/S0048-9697(01)00678-7

    Article  CAS  Google Scholar 

  14. Yamada Y, Sun Q, Tokonami S, Akiba S, Zhuo W, Hou C, Zhang S, Ishikawa T, Furukawa M, Fukutsu K, Yonehara H (2006) Radon–thoron discriminative measurements in Gansu province, China, and their implication for dose estimates. J Toxicol Environ Health Part A 69:723–734. https://doi.org/10.1080/15287390500261265

    Article  CAS  Google Scholar 

  15. Chen J, Moir D, Sorimachi A, Tokonami S (2011) Characteristics of thoron and thoron progeny in Canadian homes. Radiat Environ Biophys 50:85–89. https://doi.org/10.1007/s00411-010-0338-5

    Article  CAS  PubMed  Google Scholar 

  16. MetroRADON (2020) Report on the influence of thoron on radon monitors used in Europe including (i) procedures for checking their sensitivity to thoron, (ii) recommendations on the construction of radon monitors that are not sensitive to thoron and (iii) technical approaches aimed at reducing thoron-related bias in the radon signal in existing monitors. 16ENV10 MetroRADON. http://metroradon.eu/wp-content/uploads/2017/06/D2_accepted.pdf. Assessed 10 Sept 2021

  17. Zhukovsky M, Vasilyev A (2014) Mechanisms and sources of radon entry in buildings constructed with modern technologies. Radiat Protect Dosim 160(1–3):48–52. https://doi.org/10.1093/rpd/ncu111

    Article  CAS  Google Scholar 

  18. Yarmoshenko I, Vasilyev A, Onishchenko A, Kiselev S, Zhukovsky M (2014) Indoor radon problem in energy efficient multi-storey buildings. Radiat Protect Dosim 160(1–3):53–56. https://doi.org/10.1093/rpd/ncu110

    Article  CAS  Google Scholar 

  19. Vasilyev A, Zhukovsky M (2013) Determination of mechanisms and parameters which affect radon entry into a room. J Environ Radioact 124:185–190. https://doi.org/10.1016/j.jenvrad.2013.04.014

    Article  CAS  PubMed  Google Scholar 

  20. Yarmoshenko I, Vasilyev A, Ekidin A, Pyshkina M, Malinovsky G, Onishchenko A, Zhukovsky M (2021) Non-destructive measurements of natural radionuclides in building materials for radon entry rate assessment. J Radioanal Nucl Chem 328(2):727–737. https://doi.org/10.1007/s10967-021-07690-3

    Article  CAS  Google Scholar 

  21. ATOMTEX (2018) Instruments and technologies for nuclear measurements and radiation monitoring, ATOMTEX Product Catalogue. https://atomtex.com/sites/default/files/datasheets/at6101dr.pdf. Assessed 10 Sept 2021

  22. Yu C, LePoire DJ, Cheng JJ, Gnanapragasam E, Kamboj S, Arnish J. Biwer BM, Zielen AJ, Williams WA, Wallo A, Peterson HT (2003) User’s Manual for RESRAD-BUILD. Ver 3. ANL/EAD/03–1. Argonne National Laboratory, Argonne. https://resrad.evs.anl.gov/docs/ANL-EAD-03-1.pdf. Assessed 10 Sept 2021

  23. Sharma A, Mahur AK, Sonkawade RG, Sharma AC (2015) Measurement of indoor radon, thoron in dwelling of Delhi, India using double dosimeter cups with SSNTDS. Phys Procedia 80:125–127. https://doi.org/10.1016/j.phpro.2015.11.074

    Article  CAS  Google Scholar 

  24. Guizhi Z, Detao X, Yongjun X (2008) Survey of radon and thoron concentrations in two types of countryside dwellings. Radiat Meas 43:S479–S481. https://doi.org/10.1016/j.radmeas.2008.03.012

    Article  CAS  Google Scholar 

  25. Sanada T (2021) Measurement of indoor thoron gas concentrations using a radon-thoron discriminative passive type monitor: nationwide survey in Japan. Int J Environ Res Public Health 18:1299. https://doi.org/10.3390/ijerph18031299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Inoue K, Hosoda M, Tokonami S, Ishikawa T, Fukushi M (2013) Investigation of radon and thoron concentrations in a landmark skyscraper in Tokyo. J Radioanal Nucl Chem 298:2009–2015. https://doi.org/10.1007/s10967-013-2661-1

    Article  CAS  Google Scholar 

  27. McLaughlin J (2010) An overview of thoron and its progeny in the indoor environment. Radiat Protect Dosim 141(4):316–321. https://doi.org/10.1093/rpd/ncq234

    Article  CAS  Google Scholar 

  28. Porstendörfer J (1994) Properties and behavior of radon and thoron and their decay products in the air. J Aerosol Sci 25:219–263. https://doi.org/10.1016/0021-8502(94)90077-9

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by Russian Science Foundation (Grant No. 19-19-00191). The authors are grateful to volunteers who took part in the measurements of thoron and 212Pb concentrations in their apartments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael V. Zhukovsky.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onishchenko, A.D., Zhukovsky, M.V. & Izgagin, V.S. A pilot study of indoor thoron and 212Pb concentrations in residential buildings in Ekaterinburg, Russia. J Radioanal Nucl Chem 331, 851–858 (2022). https://doi.org/10.1007/s10967-021-08127-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08127-7

Keywords

Navigation