Skip to main content
Log in

An experimental study on the extraction mechanisms of Ce(IV) from HNO3 solutions using C4mimNTf2 as extractant

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A detailed extraction equilibrium study is experimentally performed to understand the extraction mechanisms of Ce(IV) by 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (C4mimNTf2) in 1,2-dichloroethane. Further, the influence of adding TBP on the distribution ratio is investigated and demonstrated. The ceric aqueous chemistry in the nitric acid solution and slope analysis are combined to reveal the extraction mechanism. The monovalent anionic complex HCe(NO3)6 is the dominant species, which extracted by C4mimNTf2. Importantly, this study demonstrates the antagonistic effect between TBP and C4mimNTf2 on the extraction process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sun X, Luo H, Dai S (2012) Ionic liquids-based extraction: a promising strategy for the advanced nuclear fuel cycle. Chem Rev 112:2100–2128

    Article  CAS  Google Scholar 

  2. Panja S, Tripathi SC, Dhami PS, Gandhi PM (2015) Solvent extraction of Pu(IV) using TBP: a comparative study of n-dodecane and a room temperature ionic liquid. Sep Sci Technol 50:2335–2341

    CAS  Google Scholar 

  3. Wang Y, Liu Y, Chu T (2015) Spectroscopic studies on uranyl complexes with tri-n-butyl phosphate (TBP) in ionic liquids. J Radioanal Nucl Chem 308:1071–1079

    Article  Google Scholar 

  4. Sun T, Xu C, Fu J, Chen Q, Chen J, Shen X (2017) Extraction of U(VI) by the ionic liquid hexyltributylphosphonium bis(trifluoromethylsulfonyl)imides: an experimental and theoretical study. Sep Purif Technol 188:386–393

    Article  CAS  Google Scholar 

  5. Mohapatra PK (2017) Actinide ion extraction using room temperature ionic liquids: opportunities and challenges for nuclear fuel cycle applications. Dalton Trans 46:1730–1747

    Article  CAS  Google Scholar 

  6. Singh M, Sengupta A, Jayabun S, Ippili T (2017) Understanding the extraction mechanism, radiolytic stability and stripping behavior of thorium by ionic liquid based solvent systems: evidence of ‘ion-exchange’ and ‘solvation’ mechanism. J Radioanal Nucl Chem 311(1):195–208

    Article  CAS  Google Scholar 

  7. Rama R, Rout A, Venkatesan KA, Antony MP (2017) A novel phosphoramide task specific ionic liquid for the selective separation of plutonium (IV) from other actinides. Sep Purif Technol 172:7–15

    Article  CAS  Google Scholar 

  8. Zhu M, Zhao J, Li Y, Mehio N, Qi Y, Liu H, Dai S (2015) An ionic liquid-based synergistic extraction strategy for rare earths. Green Chem 17:2981–2993

    Article  CAS  Google Scholar 

  9. Lohithakshan KV, Aggarwal SK (2008) Solvent extraction studies of Pu(IV) with CMPO in 1-octyl 3-methyl imidazolium hexa fluorophosphate (C8mimPF6) room temperature ionic liquid (RTIL). Radiochim Acta 96:93–97

    Article  CAS  Google Scholar 

  10. Rout A, Venkatesan KA, Srinivasan TG, Vasudeva Rao PR (2010) Unusual extraction of plutonium(IV) from uranium(VI) and americium(III) using phosphonate based task specific ionic liquid. Radiochim Acta 98:459–466

    Article  CAS  Google Scholar 

  11. Sivaramakrishna M, Raut DR, Nayak S, Nayak SK, Mohapatra PK (2017) Unusual selective extraction of Pu4+ by some novel diamide ligands in a room temperature ionic liquid. Sep Purif Technol 181:69–75

    Article  CAS  Google Scholar 

  12. Ansari SA, Mohapatra PK, Mazan V, Billard I (2015) Extraction of actinides by tertiary amines in room temperature ionic liquids: evidence for anion exchange as a major process at high acidity and impact of acid nature. RSC Adv 5:35821–35829

    Article  CAS  Google Scholar 

  13. Pathak PN, Prabhu DR, Kumari N, Mohapatra PK (2015) Studies on the extraction of actinides using a solvent containing D2EHiBA in room temperature ionic liquids: unusual extraction of the tetravalent ions. Sep Sci Technol 50:373–379

    Article  CAS  Google Scholar 

  14. Zuo Y, Liu Y, Chen J, Li DQ (2008) The separation of cerium(IV) from nitric acid solutions containing thorium(IV) and lanthanides(III) using pure [C8mim]PF6 as extracting phase. Ind Eng Chem Res 47:2349–2355

    Article  CAS  Google Scholar 

  15. Moore FL (1969) New liquid-liquid extraction method for the separation of cerium(lV) from berkelium(IV) and other elements. Anal Chem 41(12):1658–1661

    Article  CAS  Google Scholar 

  16. El-Nadi YA (2007) Influence of alcohols on the extraction of cerium(IV) by Aliquat-336 in kerosene. Int J Miner Process 82(1):14–22

    Article  CAS  Google Scholar 

  17. Chotkowski M, Polomski D (2017) Extraction of pertechnetates from HNO3 solutions into ionic liquids. J Radioanal Nucl Chem 314:87–92

    Article  CAS  Google Scholar 

  18. Rout A, Venkatesan KA, Srinivasan TG, Vasudeva Rao PR (2011) Ionic liquid extractants in molecular diluents: extraction behavior of plutonium (IV) in 1,3-diketonate ionic liquids. Solvent Extr Ion Exch 29:602–618

    Article  CAS  Google Scholar 

  19. Rout A, Venkatesan KA, Srinivasan TG, Vasudeva Rao PR (2013) Tuning the extractive properties of purex solvent using room temperature ionic liquid. Sep Sci Technol 48(17):2576–2581

    Article  CAS  Google Scholar 

  20. Rout A, Venkatesan KA, Srinivasan TG, Vasudeva Rao PR (2012) Ionic liquid extractants in molecular diluents: extraction behavior of europium (III) in quarternary ammonium-based ionic liquids. Sep Purif Technol 95:26–31

    Article  CAS  Google Scholar 

  21. Dietz ML (2006) Ionic liquids as extraction solvents: where do we stand? Sep Sci Technol 41(10):2047–2063

    Article  CAS  Google Scholar 

  22. Janssen CHC, Macías-Ruvalcaba NA, Aguilar-Martínez M, Kobrak MN (2015) Metal extraction to ionic liquids: the relationship between structure, mechanism and application. Int Rev Phys Chem 34(4):591–622

    Article  CAS  Google Scholar 

  23. Andanson JM, Papaiconomou N, Cable PA, Traikia M, Billard I, Husson P (2017) The role of association of ions in ionic liquid/molecular solvent mixtures on metal extraction. Phys Chem Chem Phys 19(42):28834–28840

    Article  CAS  Google Scholar 

  24. Pribylova GA, Smirnov IV, Novikov AP (2013) Effect of ionic liquids on the extraction of americium by diphenyl (dibutyl) carbamoylmethyl phosphine oxide in dichloroethane from nitric acid solutions. J Radioanal Nucl Chem 295:83–87

    Article  CAS  Google Scholar 

  25. Turanov AN, Karandashev VK, Boltoeva M, Gaillard C, Mazan V (2016) Synergistic extraction of uranium(VI) with TODGA and hydrophobic ionic liquid mixtures into molecular diluent. Sep Purif Technol 164:97–106

    Article  CAS  Google Scholar 

  26. Turanov AN, Karandashev VK, Khvostikov VA (2017) Synergistic extraction of lanthanides(III) with mixtures of TODGA and hydrophobic ionic liquid into molecular diluent. Solvent Extr Ion Exch 35(7):461–479

    Article  CAS  Google Scholar 

  27. Zhu W, Jia Y, Zhang Q, Sun J, Jing Y, Li J (2019) The effect of ionic liquids as co-extractant with crown ether for the extraction of lithium in dichloromethane-water system. J Mol Liq 285:75–83

    Article  CAS  Google Scholar 

  28. Diwu J, Wang S, Good JJ, DiStefano VH, Albrecht-Schmitt TE (2011) Deviation between the chemistry of Ce(IV) and Pu(IV) and routes to ordered and disordered heterobimetallic 4f/5f and 5f/5f phosphonates. Inorg Chem 50:4842–4850

    Article  CAS  Google Scholar 

  29. Diwu J, Nelson A-GD, Wang S, Campana CF, Albrecht-Schmitt TE (2010) Comparisons of Pu(IV) and Ce(IV) diphosphonates. Inorg Chem 49:3337–3342

    Article  CAS  Google Scholar 

  30. Wu R, Zhu L (1990) Photometric determination of cerium coexistent with some other rare elements in silver alloys. Metall Anal 10(5):17–19

    CAS  Google Scholar 

  31. Nair V, Deepthi A (2007) Cerium(IV) ammonium nitrates-A versatile single-electron oxidant. Chem Rev 107:1862–1891

    Article  CAS  Google Scholar 

  32. Sillen LG, Martell EA (1971) Stability constants of metal-ion complexes supplement no. 1. Special Publication No. 25. The Chemical Society, London

  33. Levin VI, Korpusov GV, Man’ko NM, Patrusheva EN, Prokhorova NP, Platnov GF (1963) Extraction of tetravalent cerium by organic solvents. Sov Atomic Energy 15(2):828–835

    Article  Google Scholar 

  34. Reddy BR, Kumar JR, Reddy AV (2004) Liquid-liquid extraction of tetravalent zirconium from acidic chloride solutions using cyanex 272. Anal Sci 20:501–505

    Article  CAS  Google Scholar 

  35. Ramachandra Reddy B, Rajesh Kumar J, Varada Reddy A (2004) Solvent extraction of zirconium(IV) from acidic chloride solutions using the thiosubstituted organophosphorus acids Cyanex 301 and 302. J Chem Technol Biotechnol 79(11):1301–1307

    Article  Google Scholar 

  36. Zhang A, Wanyan G, Kumagai M (2004) Extraction chemistry of palladium(II). Mechanism of antagonistic synergistic extraction of palladium by a 4-aroyl derivative of 1-phenyl-3-methyl-pyrazolone-5one and trialkylamine of high molecular weight. Transit Met Chem 29:571–576

    Article  CAS  Google Scholar 

  37. Ellis RJ, Bera MK, Reinhart B, Antonio MR (2016) Trapped in the coordination sphere: nitrate ion transfer driven by the cerium(III/IV) redox couple. Phys Chem Chem Phys 18:31254–31259

    Article  CAS  Google Scholar 

  38. Joshi R, Pasilis SP (2015) The effect of tributylphosphate and tributyl phosphine oxide on hydrogen bonding interactions between water and the 1-ethyl-3-methylimidazolium cation in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J Mol Liq 209:381–386

    Article  CAS  Google Scholar 

  39. Castner EW, Wishart JF (2010) Spotlight on ionic liquids. J Chem Phys 132(12):120901

    Article  Google Scholar 

  40. Mu J, Motokawa R, Williams CD, Akutsu K, Nishitsuji S, Masters AJ (2016) Comparative molecular dynamics study on Tri-n-butyl phosphate in organic and aqueous environments and its relevance to nuclear extraction processes. J Phys Chem B 120(23):5183–5193

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported from the National Natural Science Foundation of China (U1967219).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui He or Caishan Jiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., He, H., He, M. et al. An experimental study on the extraction mechanisms of Ce(IV) from HNO3 solutions using C4mimNTf2 as extractant. J Radioanal Nucl Chem 331, 365–373 (2022). https://doi.org/10.1007/s10967-021-08119-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08119-7

Keywords

Navigation