Skip to main content
Log in

Adsorption performance and mechanism of g-C3N4/UiO-66 composite for U(VI) from aqueous solution

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The uranium (VI) adsorption performance of g-C3N4/UiO-66 composite (CNUIO) was evaluated under different solution pH values, adsorbent dosages, coexisting ions, contact times, initial U(VI) concentrations, and temperatures. The surface properties and the interaction mechanism between U(VI) and CNUIO were analyzed via SEM–EDS, BET, FT-IR and XPS. CNUIO exhibited the maximum adsorption rate of 95.01% under the conditions of CU(VI) = 10 mg/L, pH = 6, M/V = 0.4 g/L, t = 120 min, and T = 298 K, which was about 25% and 33.73% higher than that of g-C3N4 and UiO-66, respectively. The adsorption process was found to be a spontaneous endothermic process and conformed to the pseudo-second-order kinetic model and the Langmuir isothermal adsorption model. SEM–EDS and BET analysis revealed that increasing the specific surface area effectively improved the adsorption capacity of CNUIO. FT-IR spectroscopy and XPS indicated that the removal of U(VI) was attributed to the coordination complexation between the nitrogen-containing and the oxygen-containing functional groups of CNUIO and U(VI). Adsorption–desorption experiment demonstrated that CNUIO has a good reusability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Gudkov SV, Chernikov AV, Bruskov V (2016) Chemical and radiological toxicity of uranium compounds. Russ J Gen Chem 86(6):1531–1538

    CAS  Google Scholar 

  2. Li ZJ, Huang ZW, Guo WL et al (2017) Enhanced photocatalytic removal of uranium(VI) from aqueous solution by magnetic TiO2/Fe3O4 and Its graphene composite. Environ Sci Technol 51(10):5666–5674

    CAS  PubMed  Google Scholar 

  3. Sarafraz H, Minuchehr A, Alahyarizadeh G et al (2017) Synthesis of enhanced phosphonic functional groups mesoporous silica for uranium selective adsorption from aqueous solutions. Sci Rep-UK 7(1):11675

    CAS  Google Scholar 

  4. Orrego P, Hernández J, Reyes A (2019) Uranium and molybdenum recovery from copper leaching solutions using ion exchange. Hydrometallurgy 184:116–122

    CAS  Google Scholar 

  5. Ling L, Zhang W (2015) Enrichment and encapsulation of uranium with iron nanoparticle. J Am Chem Soc 137(8):2788–2791

    CAS  PubMed  Google Scholar 

  6. Dai ZG, Zhen Y, Sun YS et al (2021) ZnFe2O4/g-C3N4 S-scheme photocatalyst with enhanced adsorption and photocatalytic activity for uranium (VI) removal. Chem Eng J 415:129002

    CAS  Google Scholar 

  7. Taxakoli HZ, Abdollahym M, Ahmadi SJ et al (2017) Enhancing recovery of uranium column bioleaching by process optimization and kinetic modeling. T Nonferr Metal Soc 27(12):2691–2703

    Google Scholar 

  8. Yan T, Jiang F, Chen H (2014) Adsorptive removal of perfluorooctane sulfonate from water by mesoporous carbon nitride. Acta Sci Circum 34(6):1464–1472

    CAS  Google Scholar 

  9. Dong XP, Cheng F (2015) Recent development in exfoliated two-dimensional g-C3N4 nanosheets for photocatalytic applications. J Mater Chem A 3(47):23642–23652

    CAS  Google Scholar 

  10. Liu JX, Chen ZG, Xie SB et al (2019) Adsorption properties and mechanism of U(VI) onto mxidized graphitic carbon nitride nanomaterials. Fine Chem 36(7):1–10

    Google Scholar 

  11. Shen CC, Chen CL, Wen T et al (2015) Superior adsorption capacity of g-C3N4 for heavy metal ions from aqueous solutions. J Colloid Interface Sci 456:7–14

    CAS  PubMed  Google Scholar 

  12. Nguyen TKA, Pham TT, Huy NP et al (2021) The effect of graphitic carbon nitride precursors on the photocatalytic dye degradation of water-dispersible graphitic carbon nitride photocatalysts. Appl Surf Sci 537:148027

    CAS  Google Scholar 

  13. Ge YJ, Wu J, Wang GH et al (2021) Preparation of porous graphite phase carbon nitride ang its adsorption property for U(VI). Atomic Energy Sci Technol 55(4):603–611

    CAS  Google Scholar 

  14. Liu JX, Chen ZG, Yu K et al (2019) Polyaniline/oxidation etching graphitic carbon nitride composites for U(VI) removal from aqueous solutions. J Radioanal Nucl Chem 321(3):1005–1017

    CAS  Google Scholar 

  15. Ge YJ, He ZQ, Wu J et al (2020) Manganese ferrite/porous graphite carbon nitride composites for U(VI) adsorption from aqueous solutions. J Radioanal Nucl Chem 326(1):157–171

    CAS  Google Scholar 

  16. Long W, Liu HJ, Yan XM et al (2018) Preparation of new nano magnetic material Fe3O4@g-C3N4 and good adsorption performance on uranium ion. Mater Sci Eng 322:1–6

    Google Scholar 

  17. Hao X, Chen RR, Liu Q et al (2018) A novel U(VI)-imprinted graphitic carbon nitride composite for the selective and efficient removal of U(VI) from simulated seawater. Inorg Chem Front 5(9):2218–2226

    CAS  Google Scholar 

  18. Zhang Y, Zhou JB, Feng QQ et al (2018) Visible light photocatalytic degradation of MB using UiO-66/g-C3N4 heterojunction nanocatalyst. Chemosphere 212:523–532

    CAS  PubMed  Google Scholar 

  19. Luo BC, Yuan LY, Tang Q (2015) U(VI) capture from aqueous solution by highly porous and stable MOFs: UiO-66 and its amine derivative. J Radioanal Nucl Chem 307(1):269–276

    Google Scholar 

  20. Du ZY, Li BL, Jiang C et al (2021) Sorption of U(VI) on schiff-base functionalized metal–organic frameworks UiO-66-NH2. J Radioanal Nucl Chem 327(2):811–819

    CAS  Google Scholar 

  21. Tripathi S, Sreenivasulu B, Suresh A et al (2020) Assorted functionality-appended UiO-66-NH2 for highly efficient uranium(VI) sorption at acidic/neutral/basic pH. RSC Adv 10(25):14650–14661

    CAS  Google Scholar 

  22. Zhang XD, Yang Y, Huang WY et al (2018) g-C3N4/UiO-66 nanohybrids with enhanced photocatalytic activities for the oxidation of dye under visible light irradiation. Mater Res Bull 99:349–358

    CAS  Google Scholar 

  23. Fan BY (1987) Spectrophotometric determination of trace uranium and thorium in environmental samples. Radiat Protect Bull 06:18–25

    Google Scholar 

  24. Cumberland SA, Douglas G, Grice K et al (2016) Uranium mobility in organic matter-rich sediments: A review of geological and geochemical processes. Earth-Sci Rev 159:160–185

    CAS  Google Scholar 

  25. Schierz A, Zanker H (2009) Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption. Environ Pollut 157(4):1088–1094

    CAS  PubMed  Google Scholar 

  26. Sun YB, Yang SB, Chen Y (2015) Adsorption and desorption of U(VI) on functionalized graphene oxides: a combined experimental and theoretical study. Environ Sci Technol 49(7):4255–4262

    CAS  PubMed  Google Scholar 

  27. Yao W, Wu YH, Pang HW et al (2018) In-situ reduction synthesis of manganese dioxide@polypyrrole core/shell nanomaterial for highly efficient enrichment of U(VI) and Eu(III). Sci China Chem 61(7):812–823

    CAS  Google Scholar 

  28. Xu RM, Ji QH, Zhao P et al (2020) Hierarchically porous UiO-66 with tunable mesopores and oxygen vacancies for enhanced arsenic removal. J Mater Chem A 8(16):7870–7879

    CAS  Google Scholar 

  29. Gu WY, Huang XY, Tian YH et al (2021) High-efficiency adsorption of tetracycline by cooperation of carbon and iron in a magnetic Fe/porous carbon hybrid with effective Fenton regeneration. Appl Surf Sci 538:147813

    CAS  Google Scholar 

  30. Wu P, Wang Y, Hu X (2018) Uranium adsorption on ferroferric oxide/graphene oxide nanoribbon composite material. Atom Energy Sci Technol 52(9):1561–1568

    CAS  Google Scholar 

  31. Zou YD, Wang PY, Yao W et al (2017) Synergistic immobilization of UO22+ by novel graphitic carbon nitride @ layered double hydroxide nanocomposites from wastewater. Chem Eng J 330:573–584

    CAS  Google Scholar 

  32. Yu K, Liu JX, Xie SB et al (2020) Study on the properties and mechanism of U(VI) adsorption of PPy/g-C3N4. Materials Rep 34(23):23020–23026

    Google Scholar 

  33. Rajaei A, Ghani K, Jafari M (2021) Modification of UiO-66 for removal of uranyl ion from aqueous solution by immobilization of tributyl phosphate. J Chem Sci. https://doi.org/10.1007/s12039-020-01864-4

    Article  Google Scholar 

  34. Liu JM, Yin XH, Liu T (2019) Amidoxime-functionalized metal-organic frameworks UiO-66 for U(VI) adsorption from aqueous solution. J Taiwan Inst Chem E 95:416–423

    CAS  Google Scholar 

  35. Yang PP, Liu Q, Liu JY et al (2017) Interfacial growth of a metal–organic framework (UiO-66) on functionalized graphene oxide (GO) as a suitable seawater adsorbent for extraction of uranium(VI). J Mater Chem A 5(34):17933–17942

    CAS  Google Scholar 

  36. Feng S, Wang RB, Zhang ZH et al (2018) Synthesis and adsorption property of UiO-66/GO nanocomposites. Fine Chem 35(11):1942–1947

    Google Scholar 

  37. Yu HG, Ma HQ, Wu XH et al (2020) One-step realization of crystallization and cyano-group generation for g-C3N4 photocatalysts with Improved H2 production. Solar RRL 5(2):2000372

    Google Scholar 

  38. Sing KSW, Everett DH, Haul RAW et al (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57(4):603–619

    CAS  Google Scholar 

  39. Muller K, Brendler V, Foerstendorf H (2008) Aqueous uranium(VI) hydrolysis species characterized by attenuated total reflection fourier-transform infrared spectroscopy. Inorg Chem 47(21):10127–10134

    PubMed  Google Scholar 

  40. Zhang YC, Zhang Q, Shi QW et al (2015) Acid-treated g-C3N4 with improved photocatalytic performance in the reduction of aqueous Cr(VI) under visible-light. Sep Purif Technol 142:251–257

    CAS  Google Scholar 

  41. Zhang YJ, Thomas A, Antonietti M et al (2009) Activation of carbon nitride solids by protonation: morphology changes, rnhanced Ionic conductivity, and photoconduction experiments. Nat Mater 8(1):76–80

    Google Scholar 

  42. Pham TT, Shin E (2018) Influence of g-C3N4 precursors in g-C3N4/NiTiO3 composites on photocatalytic behavior and the interconnection between g-C3N4 and NiTiO3. Langmuir 34(44):13144–13154

    CAS  PubMed  Google Scholar 

  43. Dong F, Wang ZY, Sun YJ et al (2013) Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity. J Colloid Interf Sci 401:70–79

    CAS  Google Scholar 

  44. Rong LS, Xia L, Zhou SK et al (2021) Preparation of UiO-66/chitosan and its adsorption mechanism of U(VI). Acta Materiae Compositae Sinica 002:1–11

    Google Scholar 

  45. Liu Y, Yang YY, Chen L et al (2016) Efficient removal of U(VI) from aqueous solutions by polyaniline/hydrogen-titanate nanobelt composites. RSC ADV 6(61):56139–56148

    CAS  Google Scholar 

  46. Fan GD, Zhan JJ, Luo J et al (2019) Decorating Ag/AgCl on UiO-66-NH2: synergy between Ag plasmons and heterostructure for the realization of efficient visible light photocatalysis. Chinese J Catal 40(8):1187–1201

    Google Scholar 

  47. Shokouhfar N, Aboutorabi L, Morsali A (2018) Improving the capability of UiO-66 for Cr(VI) adsorption from aqueous solutions by introducing isonicotinate N-oxide as the functional group. Dalton T 47(41):14549–14555

    CAS  Google Scholar 

  48. Yu CF, Tan L, Shen SJ et al (2021) In situ preparation of g-C3N4/polyaniline hybrid composites with enhanced visible-light photocatalytic performance. J Environ Sci 104(6):317–325

    Google Scholar 

  49. Li B, Zhang J, Luo ZY et al (2021) Amorphous B-doped graphitic carbon nitride quantum dots with high photoluminescence quantum yield of near 90% and their sensitive detection of Fe2+/Cd2+. Sci China Mater 64:1–14

    CAS  Google Scholar 

  50. Wang XL, Li GR, Li MJ et al (2021) Reinforced polysulfide barrier by g-C3N4/CNT composite towards superior lithium-sulfur batteries. J Energy Chem 53:234–240

    Google Scholar 

  51. Xie Y, Chen CL, Ren XM et al (2019) Coupling g-C3N4 nanosheets with metal-organic frameworks as 2D/3D composite for the synergetic removal of uranyl ions from aqueous solution. J Colloid Interf Sci 550:117–127

    CAS  Google Scholar 

  52. Guo DX, Song XM, Zhang LL et al (2020) Recovery of uranium (VI) from aqueous solutions by the polyethyleneimine-functionalized reduced graphene oxide/molybdenum disulfide composition aerogels. J Taiwan Inst Chem E 106:198–205

    CAS  Google Scholar 

  53. Zhang YZ, Chen ZW, Li JL et al (2021) Self-assembled synthesis of oxygen-doped g-C3N4 nanotubes in enhancement of visible-light photocatalytic hydrogen. J Energy Chem 54:36–44

    Google Scholar 

  54. Yang F, Xie SB, Wang GH et al (2020) Investigation of a modified metal-organic framework UiO-66 with nanoscale zero-valent iron for removal of uranium (VI) from aqueous solution. Environ Sci Pollut R 27(16):20246–20258

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant Numbers NO42177074].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinxiang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare the following financial interests/personal relationships which may be considered as potential competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Zheng, Z., Zhu, K. et al. Adsorption performance and mechanism of g-C3N4/UiO-66 composite for U(VI) from aqueous solution. J Radioanal Nucl Chem 331, 469–481 (2022). https://doi.org/10.1007/s10967-021-08116-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08116-w

Keywords

Navigation