Skip to main content
Log in

Evaluation of radiological hazards due to natural radionuclide in rocks and the dependence of radioactivity on the mineralogy of rocks in Udupi district on the south west coast of India

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Radiological hazards due natural radioactivity in rocks were assessed in the Udupi district on the south west coast of India. The activity of radionuclides 226Ra, 232Th and 40K in rocks, as a commonly used construction material were estimated. The radiological hazards to the population of the region were evaluated. The 232Th activity concentration in granitic rocks was found to be high. To trace the sources of radioactivity in rocks, the mineralogical studies were carried out using XRD and FTIR technique. The studies indicated that the thorium phosphates and potassium bearing feldspars minerals are the main source of radioactivity in rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. UNSCEAR (2000) Exposure from natural radiation sources. United Nations Scientific Committee on the effects of Atomic Radiation. Report to general assembly. Annex B exposure from natural radiation sources. United Nations, New York

  2. Ivanovich M, Harmon RS (1982) Uranium series disequilibrium. Application to environmental problems. Oxford University Press, New York

  3. Guillén J, Tejado JJ, Baeza A, Corbacho JA, Muñoz JG (2014) Assessment of radiological hazard of commercial granites from Extremadura (Spain). J Environ Radioact 132:81–88

    Article  PubMed  Google Scholar 

  4. Barthel FH, Tulsidas H (2014) Thorium: geology, occurrence, deposits and resources. 48(17): 193–200

  5. René M, Akitsu T (2017) Nature, sources, resources, and production of thorium. Descriptive Inorganic Chemistry Researches of Metal Compounds, Intech Open, London, pp 201–212

  6. Tzortzis M, Tsertos H (2004) Determination of thorium, uranium and potassium elemental concentrations in surface soils in Cyprus. J Environ Radioact 77(3):325–338

    Article  CAS  PubMed  Google Scholar 

  7. El-Dine NW, El-Shershaby A, Afifi S, SroorA SE (2011) Natural radioactivity and Rare Earth elements in feldspar samples, Central Eastern desert, Egypt. Appl Radiat Isotopes 69(5):803–807

    Article  Google Scholar 

  8. Lubin JH, Boice Jr JD, Edling C, Hornung RW, Howe GR, Kunz E, Kusiak RA, Morrison HI, Radford EP, Samet JM, Tirmarche M (1995) Lung cancer in radon-exposed miners and estimation of risk from indoor exposure. JNCI: J Natl Cancer Inst 87(11):817–827

  9. Shahrokhi A, Adelikhah M, Imani M et al (2021) A brief radiological survey and associated occupational exposure to radiation in an open pit slate mine in Kashan, Iran. J Radioanal Nucl Chem 329:141–148

    Article  CAS  Google Scholar 

  10. Adelikhah M, Shahrokhi A, Imani M, Chalupnik S, Kovács T (2021) Radiological assessment of indoor radon and thoron concentrations and indoor radon map of dwellings in Mashhad, Iran. Int J Environ Res Public Health 18(1):141

    Article  CAS  Google Scholar 

  11. Shahrokhi A, Kovacs T (2021) Radiological survey on radon entry path in an underground mine and implementation of an optimized mitigation system. Environ Sci Europe 33(1):1–14

    Article  Google Scholar 

  12. Sheen S, Lee KS, Chung WY, Nam S, Kang DR (2016) An updated review of case–control studies of lung cancer and indoor radon-Is indoor radon the risk factor for lung cancer ? Ann Occup Environ Med 28(1):1–9

    Article  Google Scholar 

  13. El-Arabi AM (2007) 226Ra, 232Th and 40Kconcentrations in igneous rocks from eastern desert, Egypt and its radiological implications. Radiat Prot Dosimetry 42(1):94–100

    CAS  Google Scholar 

  14. Shi C, Chen L, Wang Y, Chai L, Qiu G (2021) Natural radioactivity evaluation of local soil used as building materials in Xinchang section of Beishan Pre-selected Area, Northwest China. IOP Conference Series. Earth and Environmental Science 728(1):012007

  15. Shahrokhi A, Adelikhah M, Chalupnik S, Kocsis E, Toth-Bodrogi E, Kovács T (2020) Radioactivity of building materials in Mahallat, Iran: an area exposed to a high level of natural background radiation—attenuation of external radiation doses. Mater De Constr 70(340):e233

  16. U.S. Environmental Protection Agency (2019) Radiation protection: radionuclide basics: thorium. Washington, DC: U.S. Environmental Protection Agency, 2015. Available online. Last accessed February 20, 2019

  17. GSI (Geological Survey of India) (1994) District resources map of Dakshina Kannada District, Karnataka

  18. Prakash MM, Kaliprasad CS, Narayana Y (2017) Studies on natural radioactivity in rocks of Coorg district, Karnataka state, India. J Radiat Res Appl Sci 10(2):128–134

    Article  CAS  Google Scholar 

  19. Shahrokhi A, Kovács T (2021) Radiological survey on radon entry path in an underground mine and implementation of an optimized mitigation system. Environ Sci Eur 33(1):1–14

    Article  Google Scholar 

  20. Jagadeesha BG, Narayana Y (2018) Natural radionuclide concentration in Hassan District of South India. Radiat Prot Environ 41(1):37–41

    Article  Google Scholar 

  21. Chethan G, Sunil KC, Sandesh A, Narayana Y (2020) Determination of thermal conductivity of Areca husk fiber by Lee’s disc method. Res J Chem Environ 24(1):17–21

    Google Scholar 

  22. Vineethkumar V, Akhil R, Shimod KP, Prakash V (2021) Sources of monazite patches and dynamics of radionuclides concentration in the high background radiation areas of Kollam District, Kerala. J Radioanal Nucl Chem 327(1):189–198

    Article  CAS  Google Scholar 

  23. Kaliprasad CS, Vinutha PR, Narayana Y (2018) Studies on distribution of radionuclides and behavior of clay minerals in the soils of river environs. J Radioanal Nucl Chem 316(2):609–617

    Article  CAS  Google Scholar 

  24. Imani M, Adelikhah M, Shahrokhi A, Azimpour G, Yadollahi A, Kocsis E, Toth-Bodrogi E, Kovács T (2021) Natural radioactivity and radiological risks of common building materials used in Semnan Province dwellings, Iran. Environ Sci Pollut Res 28(30):41492–41503

    Article  CAS  Google Scholar 

  25. Amin RM (2012) Gamma radiation measurements of naturally occurring radioactive samples from Egyptian commercial granites. Environ Earth Sci 67(3):771–775

    Article  CAS  Google Scholar 

  26. Aykamıs AS, Turhan S, Ugur FA, Baykan UN, Kılıç AM (2013) Natural radioactivity, radon exhalation rates and indoor radon concentration of some granite samples used a construction material in Turkey. Radiat Prot Dosimetry 157(1):105–111

    Article  PubMed  Google Scholar 

  27. Papadopoulos A, Christofides G, Koroneos A, Papadopoulou L, Papastefanou C, Stoulos S (2013) Natural radioactivity and radiation index of the major plutonic bodies in Greece. J Environ Radioact 124:227–238

    Article  CAS  PubMed  Google Scholar 

  28. Ramola RC, Choubey VM, Prasad G, Gusain GS, ToshevaZ KA (2011) Radionuclide analysis in the soil of Kumaun Himalaya, India, using gamma ray spectrometry. Curr Sci 100(6):906–914

    CAS  Google Scholar 

  29. United Nations Scientific Committee on the Effects of Atomic Radiation (1993) Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 1993 Report: Report to the General Assembly, with Scientific Annexes. United Nations

  30. Beretka J, Taskin H, Nadira MK, Krieger R, El-Gamal H, Akpanowo MA, Akpanowo MA, Vineethkumar V, Darwish DAE, Matthew PJ (1985) Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys 48(1):87–95

    Article  CAS  PubMed  Google Scholar 

  31. Taskin H, Karavus MELDA, Ay P, Topuzoglu AHMET, Hidiroglu SEYHAN, Karahan G (2009) Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. J Environ Radioact 100(1):49–53

    Article  CAS  PubMed  Google Scholar 

  32. Nadira MK, Kaliprasad CS, Narayana Y, Prakash V (2019) Assessment of natural radionuclide enrichment and radiation hazard from building materials in Kannur District, Kerala. J Radioanal Nucl Chem 322:105–113

    Article  Google Scholar 

  33. El-Gamal H, Sidique E, El-Azab FM (2018) Considerable radioactivity levels in the granitic rocks of the central areas of the Eastern Desert, Egypt. Environ Sci Pollut Res 25(29):29541–29555

    Article  CAS  Google Scholar 

  34. Akpanowo MA, Umaru I, Iyakwari S (2019) Assessment of radiological risk from the soils of artisanal mining areas of Anka, North West Nigeria. Afr J Environ Sci Technol 13(8):303–309

    Article  CAS  Google Scholar 

  35. Vineethkumar V, Akhil R, Shimod KP, Prakash V (2020) Geospatial analysis of the source of monazite deposits and the dynamics of natural radionuclides in the selected coastal environs of Kerala, south west coast of India. J Radioanal Nucl Chem 326(2):983–996

    Article  CAS  Google Scholar 

  36. UNSCEAR (1988) United Nations Scientific Committee on the Effects of Atomic Radiation. Sources Effects and Risk of Ionizing Radiation United Nations, New York

  37. ICRP International Commission on Radiological Protection (1990) Annals of ICRP 1990 recommendations of the International Commission on Radiological Protection. ICRP Publication No. 60, Pergamon

  38. Ramasamy V, Sundarrajan M, Paramasivama K, Meenakshisundaram V, Suresh G (2013) Assessment of spatial distribution and radiological hazardous nature of radionuclides in high background radiation area, Kerala, India. J Appl Radiat Isotopes 73:21–31

    Article  CAS  Google Scholar 

  39. Levien L, Prewitt CT, Weidner DJ (1980) Structure and elastic properties of quartz at pressure. Am Miner 65(9–10):920–930

    CAS  Google Scholar 

  40. Downs RT, Hazen RM, Finger LW (1994) The high-pressure crystal chemistry of low albite and the origin of the pressure dependency of Al–Si ordering. Am Miner 79(11–12):1042–1052

    CAS  Google Scholar 

  41. Brigatti MF, Medici L, Poppi L, Vaccaro C (2001) Crystal chemistry of trioctahedral micas-1 M from the Alto Paranaíba Igneous Province, Southeastern Brazil. Can Mineral 39(5):1333–1345

    Article  CAS  Google Scholar 

  42. Ni Y, Hughes JM, Mariano AN (1995) Crystal chemistry of the monazite and xenotime structures. Am Miner 80(1–2):21–26

    Article  CAS  Google Scholar 

  43. Cannane NOA, RajendranM SR (2013) FT-IR spectral studies on polluted soils from industrial area at Karaikal, Puducherry State, South India. Spectrochim Acta Part A Mol Biomol Spectrosc 110:46–54

    Article  Google Scholar 

  44. Kavasara M, Vinutha PR, Kaliprasad CS, Narayana Y (2021) Studies on the dependence of natural radioactivity on clay minerals of soils in Davanagere district of Karnataka, India. J Radioanal Nucl Chem https://doi.org/10.1007/s10967-021-07920-8

  45. Sivakumar S, Ravisankar R, Raghu Y, Chandrasekaran A, Chandramohan J (2012) FTIR spectroscopic studies on coastal sediment samples from Cuddalore District, Tamilnadu, India. Indian J Adv Chem Sci 1:40–46

    Google Scholar 

  46. Boone M, Dewanckele J, Boone M, Cnudde V, Silversmit G, Van RE, Jacobs P, Laszlo V, Van HL (2011) Three-dimensional phase separation and identification in granite. Geosphere 7(1):79–86

    Article  Google Scholar 

  47. Shaw G (2007) Radioactivity in the terrestrial environment, volume 10, Elsevier

  48. Ojovan MI, Lee WE (2005) Chapter 18: new immobilising hosts and technologies. An Introduction to nuclear waste immobilisation, 251–267

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Narayana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandesh, A., Vinutha, P.R., Kaliprasad, C.S. et al. Evaluation of radiological hazards due to natural radionuclide in rocks and the dependence of radioactivity on the mineralogy of rocks in Udupi district on the south west coast of India. J Radioanal Nucl Chem 331, 1985–1994 (2022). https://doi.org/10.1007/s10967-021-08114-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08114-y

Keywords

Navigation