Skip to main content
Log in

Amidoxime-based hollow gear polyethylene fibers for rapid and efficient capture of uranyl carbonate from aqueous solutions possessing high fluoride tolerance

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The amidoxime(AO)-based polyethylene (PE) nonwoven fabric and round fiber usually present slow sorption rate of uranium (U(VI)). Herein, a kind of AO-based hollow gear PE fiber was fabricated by radiation grafting of acrylonitrile and methacrylic acid. Results showed that the equilibrium sorption time of AO-based hollow gear PE fiber was merely one-third of AO-based round fiber, and one-sixth of AO-based nonwoven fabric, respectively. The U(VI) sorption behavior obeyed the models of pseudo-second-order and Freundlich isotherm. The U(VI) uptake amount at equilibrium was 151.7 mg/g. The remaining U(VI) concentration was effectively reduced from 40.0 mg/L to 16.0 μg/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shen Y, Wu J, Liu Z, Wu W (2015) Environmentally friendlier approach to nuclear industry: recovery of uranium from carbonate solutions using ionic liquids. Ind Eng Chem Res 54:8624–8628

    Article  CAS  Google Scholar 

  2. Song Y, Wang Y, Wang L, Song C, Yang Z, Zhao A (1999) Recovery of uranium from carbonate solutions using strongly basic anion exchanger: 4. Column operation and quantitative analysis. React Funct Polym 39:245–252

    Article  CAS  Google Scholar 

  3. Ladeira ACQ, Morais CA (2005) Uranium recovery from industrial effluent by ion exchange—column experiments. Miner Eng 18:1337–1340

    Article  CAS  Google Scholar 

  4. Ladeira ACQ, Morais CA (2005) Effect of ammonium, carbonate and fluoride concentration on the uranium recovery by resins. Radiochim Acta 93:207–209

    Article  CAS  Google Scholar 

  5. Liu J, Zhao C, Zhang Z, Liao J, Liu Y, Cao X, Yang J, Yang Y, Liu N (2016) Fluorine effects on U(VI) sorption by hydroxyapatite. Chem Eng J 288:505–515

    Article  CAS  Google Scholar 

  6. Sepehrian H, Samadfam M, Asadi Z (2012) Studies on the recovery of uranium from nuclear industrial effluent using nanoporous silica adsorbent. Int J Environ Sci Technol 9:629–636

    Article  CAS  Google Scholar 

  7. Abney CW, Mayes RT, Saito T, Dai S (2017) Materials for the recovery of uranium from seawater. Chem Rev 117:13935–14013

    Article  CAS  Google Scholar 

  8. Schenk HJ, Astheimer L, Witte EG, Schwochau K (1982) Development of sorbers for the recovery of uranium from seawater. 1. assessment of key parameters and screening studies of sorber materials. Separ Sci Technol 17:1293–1308

    Article  CAS  Google Scholar 

  9. Goto A, Kusakabe K, Morooka S (1993) A test of uranium recovery from seawater with a packed bed of amidoxime fiber adsorbent. Separ Sci Technol 28:1273–1285

    Article  Google Scholar 

  10. Seko N, Katakai A, Hasegawa S, Tamada M, Kasai N, Takeda H, Sugo T, Saito K (2003) Aquaculture of uranium in seawater by a fabric-adsorbent submerged system. Nucl Technol 144:274–278

    Article  CAS  Google Scholar 

  11. Kim J, Tsouris C, Mayes RT, Oyola Y, Saito T, Janke CJ, Dai S, Schneider E, Sachde DJ (2013) Recovery of uranium from seawater: a review of current status and future research needs. Separ Sci Technol 48:367–387

    Article  CAS  Google Scholar 

  12. Li R, Feng X, Zhang M, Xing Z, Wu G (2021) Amidoximated polyethylene nonwoven fabric used for highly efficient recovery of uranyl carbonate from alkaline solution with high concentration of fluoride ions. Radiat Phys Chem 189:109615

    Article  CAS  Google Scholar 

  13. Feng X, Qiu L, Zhang M, Zhang M, He Y, Li R, Wu G (2020) Preparation of amidoxime-based ultra-high molecular weight polyethylene fiber for removing uranium from fluorine-containing wastewater. Nuclear Tech 43:68–76. https://doi.org/10.11889/j.0253-3219.2020.hjs.43.020301

    Article  Google Scholar 

  14. Li R, Li Y, Zhang M, Xing Z, Ma H, Wu G (2018) Phosphate-based ultrahigh molecular weight polyethylene fibers for efficient removal of uranium from carbonate solution containing fluoride ions. Molecules 23:1245

    Article  Google Scholar 

  15. Zhang M, Yuan M, Zhang M, Wang M, Chen J, Li R, Qiu L, Feng X, Hu J, Wu G (2020) Efficient removal of uranium from diluted aqueous solution with hydroxypyridone functionalized polyethylene nonwoven fabrics. Radiat Phys Chem 171:108742

    Article  CAS  Google Scholar 

  16. Kim J, Tsouris C, Oyola Y, Janke CJ, Mayes RT, Dai S, Gill G, Kuo L-J, Wood J, Choe K-Y, Schneider E, Lindner H (2014) Uptake of uranium from seawater by amidoxime-based polymeric adsorbent: field experiments, modeling, and updated economic assessment. Ind Eng Chem Res 53:6076–6083

    Article  CAS  Google Scholar 

  17. Oyola Y, Janke CJ, Dai S (2016) Synthesis, development, and testing of high-surface-area polymer-based adsorbents for the selective recovery of uranium from seawater. Ind Eng Chem Res 55:4149–4160

    Article  CAS  Google Scholar 

  18. Oyola Y, Dai S (2016) High surface-area amidoxime-based polymer fibers co-grafted with various acid monomers yielding increased adsorption capacity for the extraction of uranium from seawater. Dalton Trans 45:8824–8834

    Article  CAS  Google Scholar 

  19. Gill GA, Kuo LJ, Janke CJ, Park J, Jeters RT, Bonheyo GT, Pan HB, Wai C, Khangaonkar T, Bianucci L, Wood JR, Warner MG, Peterson S, Abrecht DG, Mayes RT, Tsouris C, Oyola Y, Strivens JE, Schlafer NJ, Addleman RS, Chouyyok W, Das S, Kim J, Buesseler K, Breier C, D’Alessandro E (2016) The uranium from seawater program at the pacific northwest national laboratory: overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies. Ind Eng Chem Res 55:4264–4277

    Article  CAS  Google Scholar 

  20. Misra SK, Bhardwaj YK, Gandhi PM (2013) Feasibility of the recovery of uranium from alkaline waste by amidoximated grafted polypropylene polymer matrix. J Radioanal Nucl Chem 295:471–475

    Article  CAS  Google Scholar 

  21. Pan H-B, Kuo L-J, Wood J, Strivens J, Gill GA, Janke CJ, Wai CM (2015) Towards understanding KOH conditioning of amidoxime-based polymer adsorbents for sequestering uranium from seawater. RSC Adv 5:100715–100721

    Article  CAS  Google Scholar 

  22. Li R, Ma HJ, Xing Z, Wu GZ (2018) Synergistic effects of different co-monomers on the uranium adsorption performance of amidoximated polyethylene nonwoven fabric in natural seawater. J Radioanal Nucl Chem 315:111–117

    Article  CAS  Google Scholar 

  23. Yang S, Ji G, Cai S, Xu M, Hua D (2019) Polypropylene nonwoven fabric modified with oxime and guanidine for antibiofouling and highly selective uranium recovery from seawater. J Radioanal Nucl Chem 321:323–332

    Article  CAS  Google Scholar 

  24. Liu X, Liu H, Ma H, Cao C, Yu M, Wang Z, Deng B, Wang M, Li J (2012) Adsorption of the uranyl ions on an amidoxime-based polyethylene nonwoven fabric prepared by preirradiation-induced emulsion graft polymerization. Ind Eng Chem Res 51:15089–15095

    Article  CAS  Google Scholar 

  25. Nuhanovic M, Smjecanin N, Mulahusic N, Sulejmanovic J (2021) Pomegranate peel waste biomass modified with H3PO4 as a promising sorbent for uranium(VI) removal. J Radioanal Nucl Chem 328:617–626

    Article  CAS  Google Scholar 

  26. Kirishima A, Kimura T, Tochiyama O, Yoshida Z (2004) Speciation study on complex formation of uranium(VI) with phosphate and fluoride at high temperatures and pressures by time-resolved laser-induced fluorescence spectroscopy. Radiochim Acta 92:889–896

    Article  CAS  Google Scholar 

  27. Frisbie SH, Mitchella EJ, Sarkar B (2013) World Health Organization increases its drinking-water guideline for uranium. Environ Sci Proc Imp 15:1817–1823

    CAS  Google Scholar 

  28. Tan Y, Li L, Zhang H, Ding D, Dai Z, Xue J, Liu J, Hu N, Wang Y (2018) Adsorption and recovery of U(VI) from actual acid radioactive wastewater with low uranium concentration using thioacetamide modified activated carbon from liquorice residue. J Radioanal Nucl Chem 317:811–824

    Article  CAS  Google Scholar 

  29. Pan HB, Wai CM, Kuo LJ, Gill GA, Tian GX, Rao LF, Das S, Mayes RT, Janke CJ (2017) Bicarbonate elution of uranium from amidoxime-based polymer adsorbents fro sequestering uranium from seawater. ChemistrySelect 2:3769–3774

    Article  CAS  Google Scholar 

  30. Kuo L-J, Pan H-B, Wai CM, Byers MF, Schneider E, Strivens JE, Janke CJ, Das S, Mayes RT, Wood JR, Schlafer N, Gill GA (2017) Investigations into the reusability of amidoxime-based polymeric adsorbents for seawater uranium extraction. Ind Eng Chem Res 56:11603–11611

    Article  CAS  Google Scholar 

  31. Hamza MF (2019) Grafting of quaternary ammonium groups for uranium(VI) recovery: application on natural acidic leaching liquor. J Radioanal Nucl Chem 322:519–532

    Article  CAS  Google Scholar 

  32. Maslakov KI, Teterin YA, Popel AJ, Teterin AY, Ivanov KE, Kalmykov SN, Petrov VG, Springell R, Scott TB, Farnan I (2018) XPS study of the surface chemistry of UO2 (111) single crystal film. Appl Surf Sci 433:582–588

    Article  CAS  Google Scholar 

  33. Xu Z, Rong M, Meng Q, Yao H, Ni S, Wang L, Xing H, Qu H, Yang L, Liu H (2020) Fabrication of hypercrosslinked hydroxyl-rich solid phase extractants for cesium separation from the salt lake brine. Chem Eng J 400:125991

    Article  CAS  Google Scholar 

  34. Doren A, Genet MJ, Rouxhet PG (1994) Analysis of poly(ethylene terephthalate) (PET) by XPS. Surf Sci Spectra 3:337–341

    Article  CAS  Google Scholar 

  35. Wang F, Wang X, Jiang Y, Niu Z, Wu W, Zhang H (2020) Study of adsorption performance and adsorption mechanism for U(VI) ion on modified polyacrylonitrile fibers. J Radioanal Nucl Chem 323:365–377

    Article  CAS  Google Scholar 

  36. Liu X, Xie S, Wang G, Huang X, Duan Y, Liu H (2021) Fabrication of environmentally sensitive amidoxime hydrogel for extraction of uranium (VI) from an aqueous solution. Colloid Surface A 611:125813

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Numbers: 11605275 and 11675247).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guozhong Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Feng, X., Gao, Y. et al. Amidoxime-based hollow gear polyethylene fibers for rapid and efficient capture of uranyl carbonate from aqueous solutions possessing high fluoride tolerance. J Radioanal Nucl Chem 331, 255–262 (2022). https://doi.org/10.1007/s10967-021-08113-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08113-z

Keywords

Navigation