Skip to main content
Log in

Microwave vitrification of Sr-contaminated soil: microstructure, mechanical properties and chemical durability

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The proper disposal of radioactively contaminated soil during the process of nuclear energy application has become the focus of attention. In this work, simulation Sr-contaminated soils could were successfully vitrified by microwave sintering. XRD and FESEM results show that the matrix has excellent glass morphology. The highest Vickers hardness and density values are 8.0 GPa and 3.10 g·cm−3. The NRSr after 14 days is less than 7.9 × 10–4 g·m−2·d−1, which shows the excellent chemical durability of glass. FT-IR and MD simulation results show that the matrix consists of [AlO4] and [SiO4].

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen Y, Martin G, Chabert C, Eschbach R, He H, Ye GA (2018) Prospects in China for nuclear development up to 2050. Prog Nucl Energ 103:81–90

    Article  CAS  Google Scholar 

  2. He G, Mol A, Lei Z, Lu Y (2014) Nuclear power in China after Fukushima: understanding public knowledge, attitudes, and trust. J Risk Res 17:435–451

    Article  Google Scholar 

  3. Dai J, Li S, Bi J, Ma Z (2019) The health risk-benefit feasibility of nuclear power development. J Clean Prod 224:198–206

    Article  CAS  Google Scholar 

  4. Maxi C, Núria C, Crystaline F, Breier SM, Pike P, Masqué, (2016) Reassessment of (90)Sr, (137)Cs, and (134)Cs in the coast off Japan derived from the Fukushima Dai-ichi nuclear accident. Environ Sci Technol 50:173–180

    Article  Google Scholar 

  5. Natarajan V, Karunanidhi M, Raja B (2020) A critical review on radioactive waste management through biological techniques. Environ Sci Pollut R 27:29812–29823

    Article  CAS  Google Scholar 

  6. Groudev SN, Georgiev PS, Spasova II, Komnitsas K (2001) Bioremediation of a soil contaminated with radioactive elements. Hydrometallurgy 59:311–318

    Article  CAS  Google Scholar 

  7. Tamaoki M, Yabe T, Furukawa J, Watanabe M, Ikeda K, Yasutani I, Nishizawa T (2016) Comparison of potentials of higher plants for phytoremediation of radioactive cesium from contaminated soil. Environ Control Biol 54:65–69

    Article  CAS  Google Scholar 

  8. He L, Wang Z, Gu WB (2020) Evolution of freeze–thaw properties of cement–lime solidified contaminated soil. Environ Technol Inno 21:101189

    Article  Google Scholar 

  9. Li JS, Chen L, Zhan B, Wang L, Tsang DCW (2021) Sustainable stabilization/solidification of arsenic-containing soil by blast slag and cement blends. Chemosphere 271:129868

    Article  CAS  PubMed  Google Scholar 

  10. Wang F, Zhang Y, Shen Z, Pan H, Xu J, Al-Tabbaa A (2019) GMCs stabilized/solidified Pb/Zn contaminated soil under different curing temperature: physical and microstructural properties - ScienceDirect. Chemosphere 239:124738–124738

    Article  PubMed  Google Scholar 

  11. Zhang S, Shu XY, Chen SZ, Yang HM, Hou CX, Mao XL, Chi FT, Song MX, Lu XR (2017) Rapid immobilization of simulated radioactive soil waste by microwave sintering. J Hazard Mater 337:20

    Article  CAS  PubMed  Google Scholar 

  12. Lee HY, Tseng KH, Wang CH, Lin CC, Jou CJG (2014) Efficient microwave technology to immobilize heavy metal copper (Cu) contaminated soil by microwave energy. Pract Period Hazard Toxic Radioact Waste Manag 14:21–24

    Article  Google Scholar 

  13. Wang BB (2013) Study on microwave vitrification technology of heavy metal contaminated soil. Environ Eng 31:96–98

    Google Scholar 

  14. Jou CJ (2006) An efficient technology to treat heavy metal-lead-contaminated soil by microwave radiation. J Environ Manage 78:1–4

    Article  CAS  PubMed  Google Scholar 

  15. Shu XY, Li YP, Huang WX, Chen SZ, Xu C, Zhang S, Li BS, Wang Y, Wang XQ, Qing Q, Lu XR (2020) Solubility of Nd3+ and Ce4+ in co-doped simulated radioactive contaminated soil after microwave vitrification. Ceram Int 46:6767–6773

    Article  CAS  Google Scholar 

  16. Chen SZ, Shu XY, Tang HX, Mao XL, Lu XR (2019) Microwave vitrification of uranium-contaminated soil for nuclear test site and chemical stability. Ceram Int 45:13334–13339

    Article  CAS  Google Scholar 

  17. Shu XY, Huang WX, Shi KY, Chen SZ, Lu XR (2021) Microwave vitrification of simulated radioactively contaminated soil: mechanism and performance. J Solid State Chem 293:121757

    Article  CAS  Google Scholar 

  18. Gale JD, Rohl AL (2003) The general utility lattice program (GULP). Mol Simul 29:291–341

    Article  CAS  Google Scholar 

  19. Wang M, Krishnan NMA, Wang B, Smedskjaer MM, Mauro CJ, Bauchy M (2018) A new transferable interatomic potential for molecular dynamics simulations of borosilicate glasses. J Non-cryst Solids 498:294–304

    Article  CAS  Google Scholar 

  20. Guillot B, Sator N (2007) A computer simulation study of natural silicate melts. Part II: high pressure properties. Geochim Cosmochim Ac 71:4538–4556

    Article  CAS  Google Scholar 

  21. Xiang Y, Du J (2011) Effect of strontium substitution on the structure of 45S5 bioglasses. Chem Mater 23:2703–2717

    Article  CAS  Google Scholar 

  22. Kim TE, Park JM, Sohn SW, Kim DH, Kim WT, Stoica M, Kü HU, Eckert J (2010) Effect of carbon addition on the microstructural evolution and mechanical properties in hypo-eutectic Fe-Zr(-Nb) alloys. Mater Trans 51:799–802

    Article  CAS  Google Scholar 

  23. Kaur P, Kaur S, Singh GP, Singh DP (2014) Cerium and samarium co-doped lithium aluminoborate glasses for white light emitting devices. J Alloy Compd 588:394–398

    Article  CAS  Google Scholar 

  24. Mitang W, Jinshu C, Mei Li, Feng He (2011) Structure and properties of soda lime silicate glass doped with rare earth. Physica B 406:187–191

    Article  Google Scholar 

  25. Peng LU, Xia WB, Jiang H, Zhao HF (2015) Analysis of high alumina silicate glass with infrared and Raman spectroscopy. Bull Chin Ceram Soc 34:878–881

    Google Scholar 

  26. Stuart BH (2004) Infrared spectroscopy: fundamentals and applications. Exp Thermodyn 41:325–385

    Google Scholar 

  27. Etchepare J (1970) Interprétation des spectres de diffusion Raman de verres de silice binaires. Spectrochim Acta A 26:2147–2154

    Article  CAS  Google Scholar 

  28. McMillan P (1984) Structural studies of silicate glasses and melts; applications and limitations of Raman spectroscopy? Am Mineral 69:622–644

    CAS  Google Scholar 

  29. Nakamoto K (1970) Infrared and Raman spectra of inorganic and coordination compounds. Theory Appl Inorg Chem 88–97

  30. Rosales-Sosa GA, Masuno A, Higo Y, Inoue H (2016) Crack-resistant Al2O3–SiO2 glasses. Sci Rep-UK 6:23620

    Article  CAS  Google Scholar 

  31. Weber WJ, Matzke H, Routbort JL (1984) Indentation testing of nuclear-waste glasses. J Mater Sci 19:2533–2545

    Article  CAS  Google Scholar 

  32. Connelly AJ, Hand RJ, Bingham PA, Hyatt NC (2011) Mechanical properties of nuclear waste glasses. J Nucl Mater 408:188–193

    Article  CAS  Google Scholar 

  33. Cailleteau C, Weigel C, Ledieu A, Barboux P, Devreux F (2008) On the effect of glass composition in the dissolution of glasses by water. J Non-cryst Solids 354:117–123

    Article  CAS  Google Scholar 

  34. Ledieu A, Devreux F, Barboux P, Sicard L, Spalla O (2004) Leaching of borosilicate glasses. I. Experiments. J Non-cryst Solids 343:3–12

    Article  CAS  Google Scholar 

  35. Zhang RZ, Gao YW, Wang JS, Li L, Su WS (2011) Leaching properties of immobilization of HLW into SrTiO3 ceramics. Adv Mater Res 332–334:1807–1811

    Google Scholar 

  36. Zhang RZ, Guo ZM (2004) Solidification of radiocative waste with Sr2+ perovskite synrock SHS mothed. Chin J Nonferrous Met 2004:110–115

    Google Scholar 

  37. Hashimoto C, Nakajima Y, Terada T, Itoh K, Nakayama S (2011) Effect of the preparation conditions of zirconium phosphate on the characteristics of Sr immobilization. J Nucl Mater 408:231–235

    Article  CAS  Google Scholar 

  38. Greaves GN, Fontaine A, Lagarde P, Raoux D, Gurman SJ (1981) Local structure of silicate glass. Nature 293:611–616

    Article  CAS  Google Scholar 

  39. Mckeown DA, WaychunasBrown GAGE (1985) EXAFS Study of the coordination environment of aluminum in a series of silica-rich glasses and selected minerals within the Na2O-Al2O3-SiO2 system. J Non-cryst Solids 74:349–371

    Article  CAS  Google Scholar 

  40. Stasser J, Namuswe F, Kasper GD, Jiang Y, Krest CM, Green MT, Penner-Hahn J, Goldberg DP (2010) X-ray absorption spectroscopy and reactivity of thiolate-ligated Fe(III)-OOR complexes. Inorg Chem 49:9178–9190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cormier L, Calas G, Creux S, Gaskell PH, Bouchet-Fabre B, Hannon AC (1999) Environment around strontium in silicate and aluminosilicate glasses. Phys Rev B 59:1213520–1266044

    Article  Google Scholar 

  42. Ohsato H, Kagomiya I, Terada M, Kakimoto K (2010) Origin of improvement of Q based on high symmetry accompanying Si–Al disordering in cordierite millimeter-wave ceramics. J Eur Ceram Soc 30:315–318

    Article  CAS  Google Scholar 

  43. Du WF, Kuraoka K, Akai T, Yazawa T (2000) Study of Al2O3 effect on structural change and phase separation in Na2O-B2O3-SiO2 glass by NMR. J Mater Sci 35:4865–4871

    Article  CAS  Google Scholar 

  44. Wei GL, Shi MH, Xu C, Shu XY, Luo F, Chen SZ, Wang L, Xie Y, Lu XR (2021) Mechanical and leaching properties of neodymium contaminated soil glass-ceramics. J Am Ceram Soc 104:2521–2529

    Article  CAS  Google Scholar 

  45. Rajbhandari P, Montagne L, Tricot G (2016) Doping of low-Tg phosphate glass with Al2O3, B2O3 and SiO2: part I-effect on glass property and stability. Mater Chem Phys 183:542–550

    Article  CAS  Google Scholar 

  46. Ke Z, Cao X, Shan C, Shi L, Yu T (2021) The effect of alkali metal oxide on the properties of borosilicate fireproof glass: structure, thermal properties, viscosity, chemical stability. Ceram Int 47:19605–19613

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial supports from the National Natural Science Foundation of China (No. 21677118); the Open Foundation of Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province (No. 2020ZD001); the Project of State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology (No. 20fksy10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xirui Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Miao, Y., Luo, F. et al. Microwave vitrification of Sr-contaminated soil: microstructure, mechanical properties and chemical durability. J Radioanal Nucl Chem 331, 511–522 (2022). https://doi.org/10.1007/s10967-021-08111-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08111-1

Keywords

Navigation