Skip to main content
Log in

Evaluation of gross-α, gross-β, U, Th and K values in groundwater and related health hazards: a case study, Arıklı mineralization area and its surroundings, Ayvacık, Çanakkale, Turkey

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

A Correction to this article was published on 03 March 2022

This article has been updated

Abstract

Variation of natural radioactivity level in the ground waters in the Arıklı uranium mineralization area, were investigated together with gross-α, gross-β, U, Th, K, EC and pH values. The U, Th and K values, which are mainly controlled by the geological features, varied over a wide range from 0.29 to 31.29 µg/L, 0.01–0.27 μg/L and from 0.44 to 37.29 mg/L, respectively. Although the U values of some water samples are higher than the WHO safe limits (15 ppb), all values of the gross-α and -β activity values and annual effective dose rates are lower than the drinking water safety limits of WHO (0.5 Bq/L, 1.0 Bq/L and 0.1 mSv/y, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  1. Clauser C (2011) Radiogenic Heat Production of Rocks, BT - Encyclopedia of Solid Earth Geophysics. In: Gupta HK (ed) Springer. Netherlands. https://doi.org/10.1007/978-90-481-8702-774

    Chapter  Google Scholar 

  2. Plant JA, Saunders AD (1996) The radioactive earth Radiat Prot Dosim 68(1/2):25–36

    Article  CAS  Google Scholar 

  3. Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution. 2nd Edition, A. A. Balkema, Rotterdam

  4. Osmond KJ, Cowart JB (1992) Ground water. In: Uranium Series Disequilibrium: Application to earth, marine and environmental science. Ivanovich M and Harmon R S (Eds), Oxford: Clarendon Press; New York, Oxford University Press. pp 290–333.

  5. Chabaux F, Riotte J, Dequincey O (2003) U-Th-Ra fractionation during weathering and river transport. Rev Mineralogy Geochem 52(1):533–576. https://doi.org/10.2113/0520317

    Article  CAS  Google Scholar 

  6. Porcelli D, Swarzenski PW (2003) The behavior of U- and Th-series nuclides in groundwater. Rev Mineral Geochem 52(1):317–361. https://doi.org/10.2113/0520317

    Article  CAS  Google Scholar 

  7. Doi K, Hirono S, Sakamaki Y (1975) Uranium mineralization by ground water in sedimentary rocks, Japan. Econom Geol 70:628–646

    Article  CAS  Google Scholar 

  8. Banks D, RØyset O, Strand T, Skarphagen H (1995) Radioelement (U, Th, Rn) concentrations in Norwegain bedrock groundwaters. Environ Geol 25:165–180

    Article  CAS  Google Scholar 

  9. Reimann C, Hall GEM, Seiwers U (1996) Radon, fluoride and 62 elements as determined by ICP-MS in 145 Norwegian hard-rock groundwater samples. Sci Total Environ 192:1–19

    Article  CAS  Google Scholar 

  10. Banks D, Frengstad B, Midtgård AK, Krog JR, Strand T (1998) The chemistry of Norwegian groundwaters: I. The distribution of radon, major and minor elements in 1604 crystalline bedrock groundwaters. Sci Total Environ 222:71–91

    Article  CAS  Google Scholar 

  11. Frengstad B, Skrede AKM, Banks D, Krog JR, Siewers U (2000) The chemistry of Norwegian groundwaters: III. The distribution of trace elements in 476 crystalline bedrock groundwaters, as analysed by ICP–MS techniques. Sci Total Environ 31:21–40

    Article  Google Scholar 

  12. Iwatsuki T, Yoshida H (1999) Groundwater chemistry and fracture mineralogy in the basement granitic rock in the Tono uranium mine area, Gifu Prefecture, Japan -Groundwater composition, Eh evolution analysis by fracture filling minerals. Geochem J 33:19–32

    Article  CAS  Google Scholar 

  13. Örgün Y, Altınsoy N, Gültekin AH, Karahan G, Çelebi N (2005) Natural radioactivity levels in granitic plutons and groundwaters in southeast part of Eskisehir Turkey. Appl Rad Isotopes 63:267–275

    Article  Google Scholar 

  14. Brindha K, Elango L, Nair RN (2011) Spatial and temporal variation of uranium in a shallow weathered rock aquifer in southern India. J Earth Syst Sci 120(5):911–920

    Article  CAS  Google Scholar 

  15. Brindha K, Elango L (2013) Occurrence of uranium in groundwater of a shallow granitic aquifer and its suitability for domestic use in southern India. J Radioanal Nucl Chem 295:357–367. https://doi.org/10.1007/s10967-012-2090-6

    Article  CAS  Google Scholar 

  16. Morales-Arredondo JI, Hernández MA, Hernández-Mendiola E, Estrada-Hernández RE, Bermea OM (2018) Hydrogeochemical behavior of uranium and thorium in rock and groundwater samples from southeastern of El Bajío Guanajuatese, Guanajuato Mexico. Environ Earth Sci 77(16):1–13

    Article  CAS  Google Scholar 

  17. Bonotto DM, Bueno TO, Tessari BW, Silva A (2009) The natural radioactivity in water by gross alpha and beta measurements. Radiat Meas 44(1):92–101

    Article  CAS  Google Scholar 

  18. Conthern CR, Rebers PA (1990) Radon, Radium and Uranium in Drinking Water. Lewis Publishers, USA, p 83

    Google Scholar 

  19. Bourdon B, Henderson G, Lundstrom C, Turner S (2003) Uranium–series geochemistry. Rev Mineral Geochem 52(1):1–21

    Article  CAS  Google Scholar 

  20. UNSCEAR (2000) United Nations. Scientific Committee on the Effects of Atomic Radiation. Exposures from natural radiation sources, Report to the General Assembly, with SABNYU, Annexes B

  21. Stalder E, Blanc A, Haldimann M, Dudler V (2012) Occurrence of uranium in Swiss drinking water. Chemosphere 86:672–679

    Article  CAS  Google Scholar 

  22. Kayzar TM, Villa AC, Lobaugh ML, Gaffney AM, Williams RW (2014) Investigating uranium distribution in surface sediments and waters: a case study of contamination from the Juniper Uranium Mine, Stanislaus National Forest. CA J Environ Radioactiv 136:85–97

    Article  CAS  Google Scholar 

  23. Riedel T, Kübeck C (2018) Uranium in groundwater-A synopsis based on a large hydrogeochemical data set. Water Res 129:29–38

    Article  CAS  Google Scholar 

  24. WHO (World Health Organization) (2017) Guidelines for Drinking-water Quality, fourth ed., Chp. 9, p.203–218, Geneva

  25. TS (2010) TS 9130 Doğal mineralli su Türk Standartları, Ankara (Natural mineral water Turkish Standards, Ankara) (2010) (in Turkish)

  26. Top G, Örgün Y, Karahan G, Özcan O, Horvath M, Kampfl G (2020) At high background radiation areas the relationship between in situ indoor gamma dose rates and building materials: a case study from Arikli village (Ayvacik/Canakkale/Turkey). Radiat Prot Dosimetry 188(2):246–260

    Article  CAS  Google Scholar 

  27. Top G, Örgün Tutay Y, Karahan G, Horvath M, Kampfl G (2020) Effects of local building materials on indoor gamma doses and related radiological health risks Ayvacik, Çanakkale/Turkey. Radiat Protect Dosimetry. https://doi.org/10.1093/rpd/ncaa086

    Article  Google Scholar 

  28. Top G, Örgün Y, Ayazlı IE, Belivermiş M, Karacık Z, Kampfl G (2021) Determination of Ra-226, Th-232, K-40 and Cs-137 activities in soils and beach sands and related external gamma doses in arikli mineralization area (Ayvacik/Turkey). Radiat Prot Dosimetry. https://doi.org/10.1093/rpd/ncab035

    Article  PubMed  Google Scholar 

  29. Akgünlü H, Sağlam R (1983). Çanakkale-Ayvacık- Arıklı Köyü çevresindeki uranyum Cevherleşmesi. (MTA Rapor, No: 542) (in Turkish).

  30. Günaydın A (2017) Geology and geochemistry of nodular-phosphate and fault-controlled hydrothermal-phosphate mineralizations in Arikli and Nusratli villages (Ayvacik-Çanakkale, NW Turkey). Bull Min Res Exp 155:131–146

    Google Scholar 

  31. Siyako M, Burkan KA, Okay AI (1989) Biga and Gallipoli tertiary geology and hydrocarbon possibilities (in Turkish), Biga ve Gelibolu yarımadalarının Tersiyer jeolojisi ve hidrokarbon olanakları. TPJD Bülteni 1(3):183–199

    Google Scholar 

  32. Karacık Z, Yılmaz Y (2001) Geology of ignimbirite eruptions of Ezine-Aycaık region NW Anatolia. Int. Earth Sci. Colloquium on the Aegean Region (IESCA) Proceedings. pp. 415–427

  33. Sağdık Gönen N (1981) Çanakkale-Ayvacık Küçükkuyu uranyumlu fosfat cevherlerinin laboratuar çapta ön teknolojik deneyleri. MTA Rap.No:278, Ankara

  34. Çiftçi NB, Temel RÖ, Terzioglu MN (2004) Neogene stratigraphy and hydrocarbon system of Edremit Bay (in Turkish), Edremit Körfezi civarının Neojen stratigrafisi ve hidrokarbon sistemi. TPJD 16(1):81–104

    Google Scholar 

  35. APHA (1996) Standard methods for the examination of water and wastewater, 20th edn. Water Works Association and Water Environment Federation, Washington

    Google Scholar 

  36. EPA (Environmental protection agency) (1980) Gross alpha and gross beta radioactivity in drinking water. Method 900.0., USA

  37. Currie LA (1968) Limits for qualitative detection and quantification determination. Anal Chem 40(3):587–593

    Article  Google Scholar 

  38. USA-EPA (1998) Federal Guideline Report No. 11. Limiting values of radionuclide intake and air concentration and dose conversion factors for inhalation, submersion and ingestion. EPA 520/1–88–020. Washington, DC, USA

  39. ICRP (1991) 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Annals of the ICRP 21 (1–3)

  40. Özen S, Goncuoğlu MC (2011) Origin of analcime in the Neogene Arikli tuff, Biga peninsula, NW Turkey. N Jb Miner Abh 189(1):21–34

    Article  Google Scholar 

  41. Örgün Y, Karacık Z, Demiroğlu M, Erarslan C, Top G (2021) Arıklı Uranyum Mineralizasyon Sahasının Yeraltı Sularına Etkisi Ayvacık Çanakkale. Scientific Research Projects Unit of Istanbul Technical University project number: MGA-2018–41483, Project Final Report, unpublished.

  42. Cuney M (2014) Felsic magmatism and uranium deposits. Bull Soc Geol Fr. https://doi.org/10.2113/gssgfbull.185.2.75

    Article  Google Scholar 

  43. Saha S, Selim Reza AHM, Roy MK (2019) Hydrochemical evaluation of groundwater quality of the Tista floodplain, Rangpur. Bangladesh Appl Water Sci 9:198. https://doi.org/10.1007/s13201-019-1085-7

    Article  CAS  Google Scholar 

  44. WHO (2004) World Health Organization’s Guidelines for drinking water quality. 1, 3rd edn, Recommendations, Geneva, p 515.

  45. Read D, Andreoli MAG, Knoper M, Williams CT, Jarvis N (2002) The degradation of monazite: implications for the mobility of rare-earth and actinide elements during low-temperature alteration. Europ J Mineral. 14: 487–49845. EPA, 2011. National Primary Drinking Water Regulations – Code of Federal Regulations 40 CFR Part 141. 141.55, 141.66. United States Environmental Protection Agency.

  46. EPA (2011) National Primary Drinking Water Regulations – Code of Federal Regulations 40 CFR Part 141. 141.55, 141.66. United States Environmental Protection Agency

  47. WHO (2017) World Health Organization Guidelines for drinking-water quality: first addendum to the fourth edition. ISBN 978–92–4–155001–7

  48. JISM (2008) Jordanian Drinking Water Standard. Jordan Institute of Standards and Metrology, Amman, Hashemite Kingdom of Jordan

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Scientific Research Projects Unit of Istanbul Technical University (project number: MGA-2018-41483).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cemile Erarslan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Thanks to Dr. Gyorgyi Kampfl from Institute of Mathematics and Basic Science, Chemistry Department of Hungarian University of Agriculture and Life Sciences (MATE), Gödöllö, Hungary for her valuable contributions. We would like to thank Editor and anonymous reviewers for their valuable comments, which greatly improved this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Örgün Tutay, Y., Erarslan, C., Top, G. et al. Evaluation of gross-α, gross-β, U, Th and K values in groundwater and related health hazards: a case study, Arıklı mineralization area and its surroundings, Ayvacık, Çanakkale, Turkey. J Radioanal Nucl Chem 331, 65–78 (2022). https://doi.org/10.1007/s10967-021-08097-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08097-w

Keywords

Navigation