Skip to main content
Log in

Roles of uranyl silicate minerals in the long-term mobility of uranium in fractured granite

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, the mobility of natural uranium in fractured granite was investigated by focusing on the roles of uranyl silicate minerals formed by long-term interactions with oxic groundwater. Uranium-bearing minerals observed in granite samples were identified as uranyl silicate minerals (i.e., uranophane, haiweeite, and soddyite) and this result was supported by uranium speciation calculation. The uranyl silicate minerals play important roles in understanding the mobility of uranium and the effects of water–rock interactions on long-term behavior of uranium in fractured granite systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nuclear Energy Agency (2004) Post-closure safety case for geological repositories. Nature and purpose. OECD/NEA (No. 3679), Paris

  2. Gascoyne M (1982). In: Ivanovich M, Harmon RS (eds) Uranium-series disequilibrium: applications to environmental problems. Clarendon Press, Oxford

    Google Scholar 

  3. Pérez del Villar L, Pelayo M, Cózar JS, De la Cruz B, Pardillo J, Reyes E, Caballero E, Delgado A, Nuñez R, Ivanovich M, Hasler SE (1997) Mineralogical and geochemical evidence of the migration/retention processes of U and Th in fracture fillings from the El Berrocal granitic site (Spain). J Contam Hydrol 26:45–60

    Article  Google Scholar 

  4. Cui D, Eriksen T (2000) Fracture-filling minerals as uranium sinks and sources, a natural analogue study at Palmottu, Finland. Radiochim Acta 88:751–755

    Article  CAS  Google Scholar 

  5. Horie K, Hidaka H (2004) Redistribution of U, Pb and REE in association with alteration of uranium minerals from the Koongarra deposit, Northern Territory, Australia. Radiochim Acta 92:805–808

    Article  CAS  Google Scholar 

  6. Noseck U, Brasser Th, Rajlich P, Laciok A, Hercik M (2004) Mobility of uranium in tertiary argillaceous sediments - a natural analogue study. Radiochim Acta 92:797–803

    Article  CAS  Google Scholar 

  7. Quejido AJ, Pérez del Villar L, Cózar JS, Fernámdez-Díaz M, Crespo MT (2005) Distribution of trace elements in fracture fillings from the “Mina Fe” uranium deposit (Spain) by sequential leaching: Implications for the retention processes. Appl Geochem 20:487–506

    Article  CAS  Google Scholar 

  8. Jokelainen L, Markovaara-Koivisto M, Read D, Lindberg A, Siitari-Kauppi M, Hellmuth K-H (2010) Understanding uranium behavior at the Askola uranium mineralization. Radiochim Acta 98:743–747

    Article  CAS  Google Scholar 

  9. Gorman-Lewis D, Burns PC, Fein JB (2008) Review of uranyl mineral solubility measurements. J Chem Thermodyn 40:335–352

    Article  CAS  Google Scholar 

  10. Baker RJ (2014) Uranium minerals and their relevance to long-term storage of nuclear fuels. Coord Chem Rev 266–267:123–136

    Article  Google Scholar 

  11. Finch RJ, Ewing RC (1992) The corrosion of uraninite under oxidizing conditions. J Nucl Mater 190:133–156

    Article  CAS  Google Scholar 

  12. Wronkiewicz DJ, Bates JK, Gerding TJ, Veleckis E, Tani BS (1992) Uranium release and secondary phase formation during unsaturated testing of uranium dioxide at 90 °C. J Nucl Mater 190:107–127

    Article  CAS  Google Scholar 

  13. Wronkiewicz DJ, Bates JK, Wolf SF, Buck EC (1996) Ten-year results from undersaturated drip tests with UO2 at 90 °C: implications for the corrosion of spent nuclear fuel. J Nucl Mater 238:78–95

    Article  CAS  Google Scholar 

  14. Catalano JG, Heald SM, Zachara JM, Brown GE (2004) Spectroscopic and diffraction study of uranium speciation in contaminated vadose zone sediments from the Hanford Site, Washington State. Environ Sci Technol 38:2822–2828

    Article  CAS  Google Scholar 

  15. Finch RJ, Hawthorne FC (1998) Structural relations among schoepite, metaschoepite and dehydrated schoepite. Can Mineral 36:831–845

    CAS  Google Scholar 

  16. Pearcy EC, Prikryl JD, Murphy WM, Leslie BW (1994) Alteration of uraninite from the Nopal I deposit, Peña Blanca District, Chihuahua, Mexico, compared to degradation of spent nuclear fuel in the proposed U.S. high-level nuclear waste repository at Yucca Mountain. Nevada Appl Geochem 9:713–732

    Article  CAS  Google Scholar 

  17. Smellie JAT, Karlsson F (1999) The use of natural analogues to assess radionuclide transport. Eng Geol 59:193–220

    Article  Google Scholar 

  18. Baik MH, Jung EC, Jeong J (2015) Determination of uranium concentration and speciation in natural granitic groundwater using TRLFS. J Radioanal Nucl Chem 305:589–598

    Article  CAS  Google Scholar 

  19. Baik MH, Lee JK (2020) Long-term mobility of uranium in the granitic KURT site using isotopic analysis and sequential chemical extraction. J Radioanal Nucl Chem 326:1173–1183

    Article  CAS  Google Scholar 

  20. Bethke CM, Yeakel S (2013) The geochemist’s workbench release 9.0: GWB essentials guide. Aqueous Solutions LLC, Champaign, Illinois

    Google Scholar 

  21. Guillamont R, Fanghänel Th, Fuger J, Grenthe I, Neck V, Palmer DA, Rand MH (2003) Update on the chemical thermodynamics of uranium, neptunium, plutonium, Americium and technetium. Elsevier, Amsterdam

    Google Scholar 

  22. Bernhard G, Geipel G, Brendler V, Nitsche H (1996) Speciation of uranium in seepage waters of a mine tailing pile studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS). Radiochim Acta 74:87–91

    Article  CAS  Google Scholar 

  23. Bernhard G, Geipel G, Brendler V, Nitsche H (1998) Uranium speciation in waters of different uranium mining areas. J Alloy Compd 201–203:201–205

    Article  Google Scholar 

  24. Prat O, Vercouter T, Ansoborlo E, Fichet P, Perret P, Kurttio P, Salonen L (2009) Uranium speciation in drinking water from drilled wells in Southern Finland and its potential links to health effects. Environ Sci Technol 43:3941–3946

    Article  CAS  Google Scholar 

  25. Lee J-Y, Yun J-I (2013) Formation of ternary CaUO2(CO3)32- and Ca2UO2(CO3)3(aq) complexes under neutral to weakly alkaline conditions. Dalton Trans 42:9862–9869

    Article  CAS  Google Scholar 

  26. Schmeide K, Gürtler S, Müller K, Steudtner R, Joseph C, Bok F, Brendler V (2014) Interaction of U(VI) with Äspö diorite: A batch and in situ ATR FT-IR sorption study. Appl Geochem 49:116–125

    Article  CAS  Google Scholar 

  27. Bernhard G, Geipel G, Reich T, Brendler V, Amayri S, Nitsche H (2001) Uranyl(VI) carbonate complex formation: Validation of the Ca2UO2(CO3)3(aq.) species. Radiochim Acta 89:511–518

    Article  CAS  Google Scholar 

  28. Ervanne H, Suksi J (1996) Comparison of ion-exchange and coprecipitation methods in determining uranium oxidation states in solid phases. Radiochem 38:306–309

    Google Scholar 

  29. Cho H-R, Jung EC, Cha W, Song K (2013) Quantitative analysis of uranium in aqueous solutions using a semiconductor laser-based spectroscopic method. Anal Chem 85:4279–4283

    Article  CAS  Google Scholar 

  30. Davies W, Gray W (1964) A rapid and specific titrimetric method for the precise determination of uranium using iron(II) sulphate as reductant. Talanta 11:1203–1211

    Article  CAS  Google Scholar 

  31. Cohen D, Carnall WT (1961) Absorption spectra of uranium(III) and uranium(IV) in DClO4 solution. J Phys Chem 64:1933–1936

    Article  Google Scholar 

  32. Eyal Y, Olander DR (1990) Leaching of uranium and thorium from monazite: I Initial leaching. Geochim Cosmochim Acta 54:1867–1877

    Article  CAS  Google Scholar 

  33. Omel’yanenko BI, Petrov VA, Poluektov VV (2007) Behavior of uranium under conditions of interaction of rocks and ores with subsurface water. Geol Ore Depos 49:378–391

    Article  Google Scholar 

  34. Andersen MB, Erel Y, Bourdon B (2009) Experimental evidence for 234U–238U fractionation during granite weathering with implications for 234U/238U in natural waters. Geochim Cosmochim Acta 73:4124–4141

    Article  CAS  Google Scholar 

  35. Hwang J, Moon SH, Ripley EM, Kim YH (2014) Determining uraniferous host rocks and minerals as a source of dissolved uranium in granite aquifers near the central Ogcheon metamorphic belt. Korea Environ Earth Sci 72:4035–4046

    Article  CAS  Google Scholar 

  36. Neck V, Kim JI (2001) Solubility and hydrolysis of tetravalent actinides. Radiochim Acta 89:1–16

    Article  CAS  Google Scholar 

  37. SKB (2006) Long-term safety for KBS-3 repositories at Forsmark and Laxemar – a first evaluation, main report of the SR-can project. Swedish Nuclear Fuel and Waste Management Co., Technical Report TR-06–09, Stockholm

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) funded by the Korean government through research projects (Grant Nos. 2017M2B2B1072407 and 2017M2A8A5014719).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Hoon Baik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baik, MH., Cho, HR. Roles of uranyl silicate minerals in the long-term mobility of uranium in fractured granite. J Radioanal Nucl Chem 331, 451–459 (2022). https://doi.org/10.1007/s10967-021-08084-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08084-1

Keywords

Navigation