Skip to main content
Log in

Experimental study of nitrogen isotope separation by ion-exchange chromatography: effect of process factors

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Ion-exchange chromatography is known as one of the most important techniques of stable isotope separation such as nitrogen isotopes. This study aims to investigate the effect of initial feed concentration and migration distance on the efficiency of nitrogen isotope separation. A set of 10 columns filled with the ion-exchange resin Dowex- 50 W X8 with 1 cm I.D. and 100 cm height was set up in order to study the isotope accumulation of 15N by ion-exchange chromatography. The analytical determination of the samples was made by emission spectrometry. The height equivalent to a theoretical plate (HETP) was found to decrease with increasing the migration distance. Results showed that a maximum separation factor of 6.616% could be obtained at an initial ammonium concentration of 0.5 mol/l, feed flow rate of 1.5 ml/min, and migration distance of 70 m. And also the separation factor decreases slightly with the ammonia concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ohtsuka H et al (1995) Nitrogen isotope separation by means of cation exchange resin,(I) effects of eluent concentration. J Nucl Sci Technol 32(10):1001–1007

    Article  CAS  Google Scholar 

  2. Moradi R et al (2016) Air gap membrane distillation for enrichment of H218O isotopomers in natural water using poly (vinylidene fluoride) nanofibrous membrane. Chem Eng Process 100:26–36

    Article  CAS  Google Scholar 

  3. Jahromi PF, Karimi-Sabet J, Amini Y (2018) Ion-pair extraction-reaction of calcium using Y-shaped microfluidic junctions: an optimized separation approach. Chem Eng J 334:2603–2615

    Article  Google Scholar 

  4. Marsousi S et al (2019) Liquid-liquid extraction of calcium using ionic liquids in spiral microfluidics. Chem Eng J 356:492–505

    Article  CAS  Google Scholar 

  5. Abdollahi P et al (2020) Microfluidic solvent extraction of calcium: modeling and optimization of the process variables. Sep Purif Technol 231:115875

    Article  CAS  Google Scholar 

  6. Jahromi PF et al (2017) Pressure-driven liquid-liquid separation in Y-shaped microfluidic junctions. Chem Eng J 328:1075–1086

    Article  Google Scholar 

  7. Ding X et al (2008) High enrichment of 15N by chromatographic chemical process. J Chromatogr A 1201(1):65–68

    Article  CAS  Google Scholar 

  8. Dulf E-H, Muresan CI, Unguresan ML (2014) Modeling the ($$^{} $$ N) isotope separation column. J Math Chem 52(1):115–131

    Article  CAS  Google Scholar 

  9. Karbasi E et al (2017) Experimental and numerical study of air-gap membrane distillation (AGMD): novel AGMD module for Oxygen-18 stable isotope enrichment. Chem Eng J 322:667–678

    Article  CAS  Google Scholar 

  10. Aguilera C et al (2002) Separation of stable nitrogen isotopes by ion exchange chromatography. Solvent Extr Ion Exch 20(6):777–791

    Article  Google Scholar 

  11. Krauß S, Vetter W (2019) Stable carbon and nitrogen isotope ratios of red bell pepper samples from Germany, The Netherlands, and Spain. J Agric Food Chem 67(14):4054–4063

    Article  Google Scholar 

  12. Maximo E et al (2013) Isotope separation of nitrogen by ion exchange chromatography in a cascade system. Solvent Extr Ion Exch 31(7):743–762

    Article  CAS  Google Scholar 

  13. Fujii Y et al (1985) A theoretical study of isotope separation by displacement chromatography. Sep Sci Technol 20(5–6):377–392

    Article  CAS  Google Scholar 

  14. Spindel W, Taylor T (1955) Separation of nitrogen isotopes by chemical exchange between NO and HNO3. J Chem Phys 23(5):981–982

    Article  CAS  Google Scholar 

  15. Ding X-C et al (2008) High enrichment of 15N isotope by ion exchange for nitride fuel development. Prog Nucl Energy 50(2–6):504–509

    Article  CAS  Google Scholar 

  16. Spedding FH, Powell J, Svec H (1955) A laboratory method for separating nitrogen isotopes by ion exchange1. J Am Chem Soc 77(23):6125–6132

    Article  CAS  Google Scholar 

  17. Ohwaki M et al (1998) Nitrogen isotope separation using porous microreticular cation-exchange resin. Sep Sci Technol 33(1):19–31

    Article  CAS  Google Scholar 

  18. Amini Y, Nasr Esfahany M (2019) CFD simulation of the structured packings: a review. Sep Sci Technol 54(15):2536–2554

    Article  CAS  Google Scholar 

  19. Amini Y et al (2019) Experimental and numerical study of mass transfer efficiency in new wire gauze with high capacity structured packing. Sep Sci Technol 54(16):2706–2717

    Article  CAS  Google Scholar 

  20. Park WK, Michaels ED (1988) Separation of nitrogen isotopes by displacement band chromatography. Sep Sci Technol 23(12–13):1875–1889

    Article  CAS  Google Scholar 

  21. Ding X, Nomura M, Fujii Y (2011) Effects of cross linking on the chromatographic nitrogen isotope separation. Am J Anal Chem 2:104–108

    Article  Google Scholar 

  22. Ding X et al (2005) Nitrogen isotope enrichment for nitride fuel by using hybrid chemical exchange process. Prog Nucl Energy 47(1–4):420–425

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younes Amini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi-Motlagh, M., Amini, Y. & Karimi-Sabet, J. Experimental study of nitrogen isotope separation by ion-exchange chromatography: effect of process factors. J Radioanal Nucl Chem 331, 309–315 (2022). https://doi.org/10.1007/s10967-021-08079-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08079-y

Keywords

Navigation