Skip to main content
Log in

Elemental composition of the Chelyabinsk meteorite determined by neutron activation analysis

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The elemental composition of the fragment of one of the biggest meteorites, which entered the Earth's atmosphere over Chelyabinsk, Russia was investigated by instrumental neutron activation analysis at the IBR-2 reactor. A total of 27 major and trace elements Si, Ti, Cr, Al, Fe, Mn, Mg, Ca, Na, K, V, Sc, Co, Ni, Zn, As, Se, Rb, Mo, Ag, Sb, Cs, Sm, Tm, Ir, Au, U was determined in the analyzed fragment. Obtained values were compared with the average composition of LL-chondrites and results reported by other scientific groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1

Similar content being viewed by others

References

  1. Bezaeva NS, Badyukov DD, Nazarov MA et al (2014) Magnetic properties of the LL5 ordinary chondrite Chelyabinsk (fall of February 15, 2013). Meteorit Planet Sci 49:958–977. https://doi.org/10.1111/maps.12307

    Article  CAS  Google Scholar 

  2. Galimov EM, Kolotov VP, Nazarov MA et al (2013) Analytical results for the material of the Chelyabinsk meteorite. Geochem Int 51:522–539. https://doi.org/10.1134/S0016702913070100

    Article  CAS  Google Scholar 

  3. Koroteev VA, Berzin SV, Erokhin YV et al (2013) Composition and structure of the Chelyabinsk meteorite. Dokl Earth Sci 451:839–842. https://doi.org/10.1134/S1028334X13080023

    Article  CAS  Google Scholar 

  4. Popova OP, Jenniskens P, Emel’yanenko V et al (2013) Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization. Science 80(342):1069–1073. https://doi.org/10.1126/science.1242642

    Article  CAS  Google Scholar 

  5. Badyukov DD, Dudorov AE (2013) Fragments of the Chelyabinsk meteorite shower: distribution of masses and sizes and constraints on the mass of the largest fragment. Geochem Int 51:583–586. https://doi.org/10.1134/S0016702913070070

    Article  CAS  Google Scholar 

  6. Kaeter D, Ziemann MA, Böttger U et al (2018) The Chelyabinsk meteorite: new insights from a comprehensive electron microscopy and Raman spectroscopy study with evidence for graphite in olivine of ordinary chondrites. Meteorit Planet Sci 53:416–432. https://doi.org/10.1111/maps.13027

    Article  CAS  Google Scholar 

  7. Morlok A, Bischoff A, Patzek M et al (2017) Chelyabinsk–a rock with many different (stony) faces: an infrared study. Icarus 284:431–442. https://doi.org/10.1016/j.icarus.2016.11.030

    Article  CAS  Google Scholar 

  8. Righter K, Abell P, Agresti D et al (2015) Mineralogy, petrology, chronology, and exposure history of the Chelyabinsk meteorite and parent body. Meteorit Planet Sci 50:1790–1819. https://doi.org/10.1111/maps.12511

    Article  CAS  Google Scholar 

  9. Ozawa S, Miyahara M, Ohtani E et al (2014) Jadeite in Chelyabinsk meteorite and the nature of an impact event on its parent body. Sci Rep 4:1–5. https://doi.org/10.1038/srep05033

    Article  CAS  Google Scholar 

  10. Lutoev VP, Potapov SS, Isaenko SI, Lysyuk AYu, Yu S, Simakova MFS (2013) Mineral substance of the meteorite chelyabinsk: infrared absorption, raman and 57fe mossbauer spectroscopy. Becтник инcтитyтa гeoлoгии Кoми нayчнoгo цeнтpa Уpaльcкoгo oтдeлeния PAH

  11. Berzin SV, Erokhin YV, Ivanov KS, Khiller VV (2016) Features of mineral and geochemical composition of Chelyabinsk meteorite. Извecтия Уpaльcкoгo гocyдapcтвeннoгo гopнoгo yнивepcитeтa

  12. Antipin VS, Kuzmin MI, Mekhonoshin AS, Yazev SA (2019) The variations of chemical composition and features of the distribution of rare elements in chondrites of fragments of the Chelyabinsk meteorite. Lithosphere. https://doi.org/10.24930/1681-9004-2019-19-2-293-303

    Article  Google Scholar 

  13. B. И. Cилaeв, B. H. Филиппoв, И. И. Гoлyбeвa, B. П. Лютoeв, C. C. Пoтaпoв, Ю. C. Cимaкoвa, B. A. Пeтpoвcкий AФX (2014) Meтeopит Чeлябинcк. Peзyльтaты минepaлoгo-гeoxимичecкиx иccлeдoвaний. In: Meтeopит Чeлябинcк — гoд нa Зeмлe. pp 443–473

  14. Kichanov SE, Kozlenko DP, Kirillov AK et al (2019) A structural insight into the Chelyabinsk meteorite: neutron diffraction, tomography and Raman spectroscopy study. SN Appl Sci 1:1–9. https://doi.org/10.1007/s42452-019-1614-x

    Article  CAS  Google Scholar 

  15. Stefanik M, Cesnek M, Sklenka L et al (2020) Neutron activation analysis of meteorites at the VR-1 training reactor. Radiat Phys Chem. https://doi.org/10.1016/j.radphyschem.2019.108675

    Article  Google Scholar 

  16. Serafima S, Duliu OG, Manea MM et al (2019) Complex investigation of the five 19th century Russian-Lipovan icons. Microchem J 150:104126. https://doi.org/10.1016/j.microc.2019.104126

    Article  CAS  Google Scholar 

  17. Zinicovscaia I, Sturza R, Duliu O et al (2020) Major and trace elements in moldavian orchard soil and fruits: assessment of anthropogenic contamination. Int J Environ Res Public Health 17:1–19. https://doi.org/10.3390/ijerph17197112

    Article  CAS  Google Scholar 

  18. Abdusamadzoda D, Abdushukurov DA, Duliu OG, Zinicovscaia I (2020) Assessment of the toxic metals pollution of soil and sediment in zarafshon valley, Northwest Tajikistan (Part ii). Toxics 8:1–18. https://doi.org/10.3390/toxics8040113

    Article  CAS  Google Scholar 

  19. Shirai N, Hidaka Y, Yamaguchi A et al (2015) Neutron activation analysis of iron meteorites. J Radioanal Nucl Chem 303:1375–1380. https://doi.org/10.1007/s10967-014-3654-4

    Article  CAS  Google Scholar 

  20. Abedinzadeh Z, Moatar F, Farzad GH (1978) Non-destructive neutron activation analysis of the Naragh meteorite. J Radioanal Chem 43:229–232. https://doi.org/10.1007/BF02519460

    Article  CAS  Google Scholar 

  21. Hatsukawa Y, Miyamoto Y, Hayakawa T et al (2008) Measuremets of presolar grain in meteorite using neutron activation analysis with multi-parameter coincidence method. J Radioanal Nucl Chem 279(1):213–216

    Article  Google Scholar 

  22. Morgan JW, Rebagay TV, Showalter DL et al (1969) Allende meteorite: some major and trace element abundances by neutron activation analysis. Nature 224:789. https://doi.org/10.1038/224789b0

    Article  CAS  Google Scholar 

  23. Zaytsev D, Borodin EN, Dudorov AE, Panfilov P (2021) The mechanical properties of Chelyabinsk LL5 chondrite under compression and tension. Earth, Moon Planets 125:1–11. https://doi.org/10.1007/s11038-021-09539-x

    Article  Google Scholar 

  24. Galimov EM (2013) Chelyabinsk meteorite-an LL5 chondrite. Sol Syst Res 47:255–259. https://doi.org/10.1134/S0038094613040126

    Article  CAS  Google Scholar 

  25. Zinicovscaia I, Pavlov SS, Frontasyeva MV et al (2018) Accumulation of silver nanoparticles in mice tissues studied by neutron activation analysis. J Radioanal Nucl Chem 318:985–989. https://doi.org/10.1007/s10967-018-6193-6

    Article  CAS  Google Scholar 

  26. Nekhoroshkov PS, Bezuidenhout J, Frontasyeva MV et al (2021) Trace elements risk assessment for consumption of wild mussels along South Africa coastline. J Food Compos Anal 98:103825. https://doi.org/10.1016/j.jfca.2021.103825

    Article  CAS  Google Scholar 

  27. Zinicovscaia I, Gundorina S, Vergel K et al (2020) Elemental analysis of Lamiaceae medicinal and aromatic plants growing in the Republic of Moldova using neutron activation analysis. Phytochem Lett 35:119–127. https://doi.org/10.1016/j.phytol.2019.10.009

    Article  CAS  Google Scholar 

  28. Vinogradov AP (1965) The composition of meteorites. Pure Appl Chem 10:459–494. https://doi.org/10.1351/pac196510040459

    Article  CAS  Google Scholar 

  29. Kaizer J, Kučera J, Kameník J et al (2017) Determination of elemental content in the Rumanová, Uhrovec, Veľké Borové, Košice and Chelyabinsk chondrites by instrumental neutron activation analysis. J Radioanal Nucl Chem 311:2085–2096. https://doi.org/10.1007/s10967-017-5168-3

    Article  CAS  Google Scholar 

  30. Wasson JT, Kallemeyn GW, Wasson JT, Kallemeyn GW (1988) Compositions of chondrites. Philos Trans R Soc London Ser A, Math Phys Sci 325:535–544. https://doi.org/10.1098/rsta.1988.0066

    Article  CAS  Google Scholar 

  31. Povinec PP, Laubenstein M, Jull AJT et al (2015) Cosmogenic radionuclides and mineralogical properties of the Chelyabinsk (LL5) meteorite: What do we learn about the meteoroid? Meteorit Planet Sci 50:273–286. https://doi.org/10.1111/maps.12419

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design of the experiment and read and approved the final version of the manuscript.

Corresponding author

Correspondence to Inga Zinicovscaia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirillov, A., Grozdov, D., Zinicovscaia, I. et al. Elemental composition of the Chelyabinsk meteorite determined by neutron activation analysis. J Radioanal Nucl Chem 331, 249–253 (2022). https://doi.org/10.1007/s10967-021-08078-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08078-z

Keywords

Navigation