Skip to main content
Log in

Interference free fluorimetric determination of uranium in Indian monazites

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A simple interference free extractive pellet fluorimetric method of determining uranium in monazite mineral samples has been developed. The quenching of fluorescence of uranium by thorium and the extent of quenching was studied. Pellet fluorimetric method of uranium determination was carried out using solvent extraction separation of uranium to ethyl acetate in the presence of sodium salt of ethylene diamine tetra acetic acid (Na-EDTA). The optimum concentration EDTA and the effect of EDTA on uranium fluorescence were studied. The accuracy of the method was established by analyzing a synthetic sample and certified reference materials (IGS-36 and DH-1a). Results were compared with those obtained by other principally different analytical techniques after solvent extraction separation using the standardized procedure. The precision obtained at 0.2% U3O8 was better than ± 10%. The modified extraction method of addition of EDTA with salting out agent prevented the co-extraction of thorium and improved the fluorescence intensity of uranium in monazite samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Voncken JHL (2016) Springer Briefs in Earth Sciences, Switzerland, pp 15–52.

  2. Sinha RK, Kakodkar A (2006) Nucl Eng and Des 236:683–700

    Article  CAS  Google Scholar 

  3. Overstreet WC (1967) USGS Prof Paper 530(11):67–73

    Google Scholar 

  4. Ali MA, Krishnan S, Banerjee DC (2001) EARFAM 13:1–21

    CAS  Google Scholar 

  5. Gupta CK, Krishnamurthy N (2003) Extractive metallurgy of Rare Earths CRC press LLC, pp 147–156.

  6. Sarkar A, Alamelu D, Aggarwal SK (2009) Talanta 78:800–804

    Article  CAS  Google Scholar 

  7. Vasconcelos DC, Oliveira AH, Silva MRS, Penna R, Santos TO, Pereira C, Rocha Z, Menezes MABC (2009) Inter Nucl Atlantic Conf, INAC, ISBN 978–85–99141–03–8.

  8. Hassan AM, Wahab MA, Nada A, Walley El-Dine N, Khazbak A (1997) Appl Radiat Isot 48(1):149–152

    Article  CAS  Google Scholar 

  9. Nuchdang S, Injarean U, Hirunanekmongkol K, Timasart N, Saksengwijit A, Leelanupat O, Rattanaphra D (2018) J Phys Conf Ser 1144–012071.

  10. Shrivastava HB, Rupa N (2018) Rita, Rao VK, Raghavender B, Sharma PK. Appl Radiat Isotop 141:21–23

    Article  CAS  Google Scholar 

  11. Padmasubashini V, Satyanarayana K (2013) At Spectroscopy 34:6–14

    Article  CAS  Google Scholar 

  12. Padmasubashini V, Beena S, Krishnakumar M, Singh SB (2020) Chem Int 6(3):98–109

    CAS  Google Scholar 

  13. Grimaldi FS, May I, Fletcher MH, Titcomb J (1954) Geo Surv Bull 1006:1–6

    Google Scholar 

  14. Rajan M, Shinde VM (1995) J Radioanal Nucl Chem 199:41–49

    Article  CAS  Google Scholar 

  15. Premadas A, Ojha N, Beegam D (2009) EARFAM 19:26–33

    CAS  Google Scholar 

  16. Tarafder PK, Pradhan SK, Roychowdhury S (2018) J Radioanal Nucl Chem 316(2):527–534

    Article  CAS  Google Scholar 

  17. Pradhan SK, Ambade B (2020) Radiochim Acta 109(3):195–203

    Article  Google Scholar 

  18. Veselsky JC (1981) Mikrochim Acta II:335–342

    Article  Google Scholar 

  19. Premadas A, Saravanakumar G (2007) EARFAM 17:1–7

    Google Scholar 

  20. Clayton RF, Hardwick WH, Moreton-Smith M, Todd R (1958), Part II, Analyst; 13–23.

  21. Sharif J, Zulkafli G (1987) JSNM 5(1):29–34

    CAS  Google Scholar 

  22. Krishnakumar M, Chakrapani G (2013) J of Appl Geochem 15(94):419–425

    CAS  Google Scholar 

  23. Ford JJ, Fritz JS (1954) Ames Laboratory ISC Technical Reports Iowa State University Digital Repository: http://lib.dr.iastate.edu/ameslab_iscreports/92

  24. Harris DC (2015), Chapter 12, EDTA Titrations, Quantitative Chemical Analysis, 9the ed Macmillan Learning Publisher.

  25. Sheng L (2011) Szymanowski j, Fein JB. Geochim Cosmochim Acta 75:3558–3567

    Article  CAS  Google Scholar 

  26. Endrizzi F, Melchior A, Tolazzi M, Rao L (2015) Dalton Trans 44:13835–13844

    Article  CAS  Google Scholar 

  27. Lister B (1981) Geostandards Newslett 5(1):75–81

    Article  Google Scholar 

  28. Leela G, Hanuman VV, Chakrapani G (2013) J Indian Chem Soc 90:1935–1939

    Google Scholar 

  29. Premadas A, Saravanakumar G (2005) J Radioanal Nucl Chem 266(1):95–100

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express sincere thanks to Beach Sand and Offshore Investigation Group of AMD for monazite samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beena Sunilkumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunilkumar, B., Patwardhan, A.A., Sunilkumar, T.S. et al. Interference free fluorimetric determination of uranium in Indian monazites. J Radioanal Nucl Chem 331, 331–338 (2022). https://doi.org/10.1007/s10967-021-08075-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08075-2

Keywords

Navigation