Skip to main content
Log in

Environmental impact assessment of post illegal mining activities in Chini Lake with regards to natural radionuclides and heavy metals in water and sediment

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Comprehensive radiological survey and evaluation of heavy metal contamination were conducted in Chini Lake, which has been awarded a pristine title of Biosphere Reserve. The concentrations of 226Ra, 228Ra, and 40K in sediments exceeded the average soil in Malaysia. Besides, the concentration of As, V, and Zn in sediments were greater than the Dutch/Malaysian target values. Results showed that the annual effective dose equivalent (AEDE) values of sediments were slightly higher than 1 mSv/y. The pollution indices indicated that the sediments were moderately to severely contaminated. Oral consumption of the lake water could cause substantial radiation-related health issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Malaysian Government Gazette No 9, Vol 6 (1914)

  2. Auditor General of Malaysia, Report on Department/Agency Activities and Management of Pahang State Government Companies (2008) National Audit Department, Malaysia.

  3. UNESCO Biosphere Reserves (2009). http://www.unesco.org/new/en/natural-sciences/environment/ecological-sciences/biosphere-reserves/asia-and-the-pacific/malaysia/tasik-chini. Accessed 27 Oct 2019

  4. Majid AA, Umar SR, Yahya R, Yasir MS, Othman MS (2008) Element analysis and radioactivity in sediment sample of Chini Lake, Pahang Darul Makmur. Malays J Anal Sci 12:167–171

    Google Scholar 

  5. Ebrahimpour M, Mushrifah I (2008) Heavy metal concentrations in water and sediments in Chini Lake, a freshwater lake, Malaysia. Environ Monit Assess 141:297–307. https://doi.org/10.1007/s10661-007-9896-7

    Article  CAS  PubMed  Google Scholar 

  6. Ahmad A, Mushrifah I, Lim EC (2008) Seasonal influence on water quality and heavy metals concentration in Chini Lake, Peninsular Malaysia. In: Proceedings of Taal 2008: the 12th world lake conference, pp 300–303

  7. Shuhaimi-Othman M, Mushrifah I, Lim EC, Ahmad A (2008) Trend in metals variation in Chini Lake, Pahang, Peninsular Malaysia. Environ Monit Assess 143:345–354. https://doi.org/10.1007/s10661-007-9937-2

    Article  CAS  PubMed  Google Scholar 

  8. Ebrahimpour M, Mushrifah I (2009) Variation and correlations of selected heavy metals in sediment and aquatic plants in Chini Lake, Malaysia. Environ Geol 57:823–831. https://doi.org/10.1007/s00254-008-1362-5

    Article  CAS  Google Scholar 

  9. Ahmad AK, Shuhaimi-Othman M (2010) Heavy metal concentrations in sediments and fishes from Lake Chini, Pahang. Malaysia J Biol Sci. https://doi.org/10.3923/jbs.2010.93.100

    Article  Google Scholar 

  10. Razak IS, Tan ZZ, Nor ZM, Wahid NBA, Mushrifah I, Latif MT (2013) Correlation between surfactants and heavy metals in a natural lake. Environ Forensics 14:59–68. https://doi.org/10.1080/15275922.2012.729004

    Article  CAS  Google Scholar 

  11. T.N. Alagesh, Chini Lake ecosystem under threat? (2017). https://www.nst.com.my/news/2017/03/220353/tasik-chini-ecosystem-under-threat. Accessed 1 Nov 2019.

  12. R. Abdul Hamid, A. Aris, Chini Lake makin nazak (2017). https://www.hmetro.com.my/node/208816. Accessed 1 Nov 2019

  13. Krishnankutty N, Idris M, Hamzah FM, Manan Y (2019) The chemical form and spatial variation of metals from sediment of Jemberau mining region of Chini Lake, Malaysia. Environ Sci Pollut Res 26:25046–25056. https://doi.org/10.1007/s11356-019-05680-3

    Article  CAS  Google Scholar 

  14. Anon, Masa depan Chini Lake makin kelam (2019). https://www.bharian.com.my/berita/nasional/2019/02/533206/masa-depan-tasik-chini-makin-kelam. Accessed 1 Nov 2019

  15. Anon, Perlombongan musnahkan ekosistem Chini Lake (2019). https://www.sinarharian.com.my/article/17654/KOLUMNIS/Perlombongan-musnahkan-ekosistem-Tasik-Chini. Accessed 1 Nov 2019

  16. Reyhani P, Reza AM (2013) Assessment of heavy metals contamination in surface water of the upstream Sardabrud River. North Iran Life Sci 10(7):884–892

    Google Scholar 

  17. WHO/FAO/IAEA, Trace elements in human nutrition and health (1996) World Health Organization, Geneva

  18. Ali H, Khan E, Ilahi I (2019) Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem. https://doi.org/10.1155/2019/6730305

    Article  Google Scholar 

  19. Jaafar O, Toriman MEH, Idris MH, Abdullah S, Juahir H, Aziz NAA, Kamarudin KA, Jamil NR (2010) Study of water level discharge relationship using artificial neural network (ANN) in Sungai Gumum, Chini Lake Pahang Malaysia. Res J Appl Sci 5(1):20–26

    Article  Google Scholar 

  20. Sharip Z, Jusoh J (2010) Integrated lake basin management and its importance for Lake Chini and others in Malaysia. Lakes Reserv Res Manag 15:41–51

    Article  Google Scholar 

  21. Malaysian Nature Society MNS, A survey of vegetation and avifauna of Chini, (1999) Kuala Lumpur, Malaysia: MNS

  22. IAEA Technical Report No. 295. Measurement of Radionuclides in Food and the Environment. (1989). International Atomic Energy Agency, Vienna

  23. Ismail AF, Rosli K, Idris WMR, Rahim SA (2018) Determination of natural radionuclides concentrations and radiological hazard index due to application of Condisoil® on Hibiscus cannabinus (kenaf) cultivation. Sains Malays. 47(5): 893–901. https://doi.org/10.17576/jsm-2018-4705-04

  24. Aziman ES, Ismail AF (2020) Frontier looking of rare-earth processed residue as sustainable thorium resources: an Insight into chemical composition and separation of thorium. Prog Nucl Energy 128:103471. https://doi.org/10.1016/j.pnucene.2020.103471

    Article  CAS  Google Scholar 

  25. Shittu Abdullahi S, Ismail AF, Samat S (2019) Radiological characterization of building materials used in Malaysia and assessment of external and internal doses. Nucl Sci Technol 30(46): 1–15. https://doi.org/10.1007/s41365-019-0569-3

  26. IAEA Technical Report No. 295. 1989. Measurement of Radionuclides in Food and the Environment. Vienna: IAEA

  27. IAEA TECDOC – 566. 1990. The Use of Gamma Ray Data to Define the Natural Radiation Environment. Vienna: IAEA

  28. Imam N, El-Sayed SM, Goher ME (2020) Risk assessments and spatial distributions of natural radioactivity and heavy metals in Nasser Lake. Egypt Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-08918-7

    Article  Google Scholar 

  29. Wang Q, Sha Z, Wang J, Zhong Q, Fang P, Ma Y, Du J (2020) Vertical distribution of radionuclides in Lake Qinghai, Qinghai-Tibet Plateau, and its environmental implications. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.127489

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kayakökü H, Doğru M (2017) Radioactivity analysis of soil samples taken from the western and northern shores of Lake Van, Turkey. Appl Radiat Isot 128:231–236

    Article  Google Scholar 

  31. Özseven A, Akkurt I, Günoğlu K (2019) Determination of some dosimetric parameters in Eğirdir Lake, Isparta, Turkey. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-019-02569-z

    Article  Google Scholar 

  32. UNSCEAR, Exposures from Natural Radiation Sources. United Nations Scientific Committee on the Effects of Atomic Radiation. Report to General Assembly, with Annexes (2000). United Nations, New York

  33. Radzali NAM, Hidzir NM, Rahman IA (2020) Determination of natural radioactivity and heavy metals at the former mining site of Kolej Universiti Islam Antarabangsa Selangor (KUIS) Lake. Malays J Analyt Sci 22(5):828–838

    Google Scholar 

  34. Almayahi B, Tajuddin A, Jaafar M (2012) Radiation hazard indices of soil and water samples in Northern Malaysian Peninsula. Appl Radiat Isot 70:2652–2660

    Article  CAS  Google Scholar 

  35. Mantero J, Thomas R, Holm E, Rääf C, Vioque I, Ruiz-Canovas C, GarcÃa-Tenorio R, Forssell-Aronsson E, Isaksson M (2020) Pit lakes from Southern Sweden: natural radioactivity and elementary characterization. Sci Rep. 10(1):13712. https://doi.org/10.1038/s41598-020-70521-0

  36. Ugbede FO, Aduo BC, Ogbonna ON, Ekoh CO (2020) Natural radionuclides, heavy metals and health risk assessment in surface water of Nkalagu river dam with statistical analysis. Sci Afr. e00439. https://doi.org/10.1016/j.sciaf.2020.e00439

  37. El-Gamal H, Sefelnasr A, Salaheldin G (2019) Determination of natural radionuclides for water resources on the West Bank of the Nile River, Assiut Governorate. Egypt Water 11(2):311. https://doi.org/10.3390/w11020311

    Article  CAS  Google Scholar 

  38. Manjón G, Mantero J, Vioque I, Díaz-Francés I, Galván JA, Chakiri S, Choukri A, García-Tenorio R (2019) Natural radionuclides (NORM) in a Moroccan river affected by former conventional metal mining activities. J Sustain Min 18(1):45–51. https://doi.org/10.1016/j.jsm.2019.02.003

    Article  Google Scholar 

  39. Jaffary NAMd, Khoo KS, Mohamed NH, Yusof MAW, Mohd Fadzil S (2019) Malaysian monazite and its processing residue: chemical composition and radioactivity. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-019-06813-1

  40. UNSCEAR (1998) Sources and effects of ionizing radiation. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation to the general Assembly. United Nations, New York, USA

  41. UNSCEAR (1988) United Nations Scientific Committee on the Effects of Atomic Radiation, Report to the General Assembly. United Nations, New York

  42. Isinkaye MO, Emelue HU (2015) Natural radioactivity measurements and evaluation of radiological hazards in sediment of Oguta Lake, South East Nigeria. J Radiat Res Appl Sci 8(3):459–469

    Article  Google Scholar 

  43. Fares S (2017) Measurements of natural radioactivity level in black sand and sediment samples of the Temsah Lake beach in Suez Canal region in Egypt. J Radiat Res Appl Sci 10(3):194–203

    Article  CAS  Google Scholar 

  44. Durusoy A, Yildirim M (2017) Determination of radioactivity concentrations in soil samples and dose assessment for Rize Province, Turkey. J Radiat Res Appl Sci 10(4):348–352

    Article  CAS  Google Scholar 

  45. Beretka J, Mathew PJ (1985) Natural radioactivity of Australian building materials. Ind Wastes By-Prod Health Phys 48(1):87–95. https://doi.org/10.1097/00004032-198501000-00007

    Article  CAS  Google Scholar 

  46. Ibikunle SB, Arogunjo AM, Ajayi OS, Olaleye OO (2017) Risk assessment of natural radioactivity in surface water and sediments from waterfall site, Osun state, Nigeria. Hum Ecol Risk Assess Int J 23(8):1978–1988

    Article  CAS  Google Scholar 

  47. ICRP, International Commission on Radiological Protection, Age-dependent Doses to Members of the Public from Intake of Radionuclides: Part 5, Compilation of Ingestion and Inhalation Dose Coefficients (1996) ICRP Publication 72, Pergamon Press, Oxford, United Kingdom

  48. WHO, World Health Organization Guidelines for Drinking-Water Quality (4th Ed.), (2011) WHO Library Cataloguing-in-Publication Data NLM classification, Geneva, WA 675.

  49. Nuccetelli C, Rusconi R, Forte M (2012) Radioactivity in drinking water: regulations, monitoring results and radiation protection issues. Ann Ist Super Sanita 48(4):362–373. https://doi.org/10.4415/ANN_12_04_04

    Article  CAS  PubMed  Google Scholar 

  50. ICRP, Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. 1991. Ann. ICRP 21(1–3)

  51. Swartjes FA (1999) Risk-based assessment of soil and groundwater quality in the Netherlands: standards and remediation urgency. Risk Anal 19:1235–1249. https://doi.org/10.1111/j.1539-69241999.tb01142.x

    Article  CAS  PubMed  Google Scholar 

  52. Ismail SNS, Shak CF, Samah MAA, Hatta EM, Wahab ASA (2015) Soil contamination from non-sanitary waste landfill in langat water catchment area. Malaysia J Sci Res Rep 7:480–493. https://doi.org/10.9734/jsrr/2015/15102

    Article  Google Scholar 

  53. CCME Canadian sediment quality guidelines for the protection of aquatic life: Summary tables (2002) Canadian Council of Ministers of the Environment, Winnipeg, Canada

  54. Malaysia Interim National Water Quality Standard (NWQS). (2006) [accessed 18 Nov 2019]. http://www.wepa-db.net/policies/law/malaysia/eq_surface.htm

  55. Varol M (2011) Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J Hazard Mater 195:355–364. https://doi.org/10.1016/j.jhazmat.2011.08.051

    Article  CAS  PubMed  Google Scholar 

  56. Kadhum SA, Ishak MY, Zulkifli SZ, Hashim R (2015) Evaluation of the status and distributions of heavy metal pollution in surface sediments of the Langat River Basin in Selangor Malaysia. Mar Pollut Bull 101:391–396. https://doi.org/10.1016/j.marpolbul.2015.10.012

    Article  CAS  PubMed  Google Scholar 

  57. Algül F, Beyhan M (2020) Concentrations and sources of heavy metals in shallow sediments in Lake Bafa, Turkey. Sci Rep. 10(1). https://doi.org/10.1038/s41598-020-68833-2

  58. Yakovlev EY, Zykova EN, Zykov SB, Malkov AV, Bazhenov AV (2020) Heavy metals and radionuclides distribution and environmental risk assessment in soils of the Severodvinsk industrial district. NW Russia Environ Earth Sci 79:218. https://doi.org/10.1007/s12665-020-08967-8

    Article  CAS  Google Scholar 

  59. USEPA, US Environmental Protection Agency, Risk Assessment Guidance For superfund (2014) Volume I, Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment), Washington, DC

  60. Mgbenu CN, Egbueri JC (2019) The hydrogeochemical signatures, quality indices and health risk assessment of water resources in Umunya district, south- east Nigeria. Appl Water Sci 9:22. https://doi.org/10.1007/s13201-019-0900-5

    Article  CAS  Google Scholar 

  61. Bortey-Sam N, Nakayama SM, Ikenaka Y, Akoto O, Baidoo E, Mizukawa H, Ishizuka M (2015) Health risk assessment of heavy metals and metalloid in drinking water from communities near gold mines in Tarkwa, Ghana. Environ Monit Assess 187(7):397. https://doi.org/10.1007/s10661-015-4630-3

    Article  CAS  PubMed  Google Scholar 

  62. Bhutiani R, Kulkarni DB, Khanna DR, Gautam A (2016) Water quality, pollution source apportionment and health risk assessment of heavy metals in groundwater of an industrial area in North India. Expo Health 8:3–18. https://doi.org/10.1007/s12403-015-0178-2

    Article  CAS  Google Scholar 

  63. Gazineu MHP, Hazin CA (2008) Radium and potassium-40 in solid wastes from the oil industry. Appl Radiat Isot 66(1):90–94. https://doi.org/10.1016/j.apradiso.2007.07.012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Universiti Kebangsaan Malaysia (UKM) under Grant Number GP-2019-K018915. The authors would like to acknowledge all lab technicians of the Nuclear Science Program, UKM for their technical support throughout the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aznan Fazli Ismail.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziman, E.S., Ismail, A.F., Jubri, S.F. et al. Environmental impact assessment of post illegal mining activities in Chini Lake with regards to natural radionuclides and heavy metals in water and sediment. J Radioanal Nucl Chem 330, 667–683 (2021). https://doi.org/10.1007/s10967-021-08049-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08049-4

Keywords

Navigation