Skip to main content
Log in

A study on the activity concentrations of 226Ra, 232Th, 40K, 137Cs and radiological risk assessments in soil samples from Seydisehir and Beysehir districts of Konya in Turkey

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate the activity concentrations of 226Ra, 232Th, 40K and 137Cs in soil samples from Seydisehir and Beysehir districts of Konya province in Turkey using gamma-ray spectrometry and to calculate radiological risk parameters. The average radioactivity concentrations of 226Ra and 232Th are higher than world average value whereas the average radioactivity concentration of 40K is lower than world average value. Mean values of absorbed gamma dose rate and annual effective dose equivalent are higher than world mean value while mean value of radium equivalent activity is lower than world average value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. UNSCEAR (2000) United Nations Scientific Committee on the Effect of Atomic Radiation. Sources and effects of ıonizing radiation. report to general assembly, with Scientific Annexes, NewYork, United Nations

  2. UNSCEAR (2008) Sources and Effects of Ionizing Radiation. Report to the general assembly annex B: exposures of the public and workers from various sources of radiation. United Nations, New York.

  3. Isınkaye MO, Emelue HU (2015) Natural radioactivity measurements and evaluation of radiological hazards in sediment of Oguta Lake, South East Nigeria. J Radiat Res Appl Sci 8:459–469. https://doi.org/10.1016/j.jrras.2015.05.001

    Article  Google Scholar 

  4. Ribeiro FCA, Silva JIR, Lima ESA, do Amaral Sobrinho NMB, Perez DV, Lauria DC (2018) Natural radioactivity in soils of the state of Rio de Janeiro (Brazil): Radiological characterization and relationships to geological formation, soil types and soil properties. J Environ Radioact 182:34–43. https://doi.org/10.1016/j.jenvrad.2017.11.017

    Article  CAS  PubMed  Google Scholar 

  5. Ugbede FO (2020) Distribution of 40K, 238U and 232Th and associated radiological risks in River sand sediments across Enugu East Nigeria. Environ Nanotechnol Monit Manag 14:100317. https://doi.org/10.1016/j.enmm.2020.100317

    Article  Google Scholar 

  6. Saini K, Bajwa BS (2017) Mapping natural radioactivity of soil samples in different regions of Punjab, India. Appl Radiat Isotopes 12:73–81. https://doi.org/10.1016/j.apradiso.2017.05.013

    Article  CAS  Google Scholar 

  7. Stevanovic V, Gulan L, Milenkovic B, Valjarevic A, Zeremski T, Penjisevic I (2018) Environmental risk assessment of radioactivity and heavy metals in soil of Toplica region, South Serbia. Environ Geochem Health 40:2101–2118. https://doi.org/10.1007/s10653-018-0085-0

    Article  CAS  PubMed  Google Scholar 

  8. Joel ES, Maxwell O, Adewoyin OO, Olawole OC, Arijaje TE, Embong Z, Saeed MA (2019) Investigation of natural environmental radioactivity concentration in soil of coastaline area of Ado-Odo/Ota Nigeria and its radiological implications. Sci Rep 9:4219. https://doi.org/10.1038/s41598-019-40884-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dusane CB, Mishra S, Sahu SK, Pandit GG (2014) Distribution of 238U, 226Ra, 232Th and 40K in soil samples around Tarapur, India. J Radioanal Nucl Chem 302:1435–1440. https://doi.org/10.1007/s10967-014-3581-4

    Article  CAS  Google Scholar 

  10. Miller M, Voutchkov M (2014) Evaluation of gamma activities of naturally occurring radioactive materials in uncontaminated surface soils of Jamaica. J Radioanal Nucl Chem 300:303–313. https://doi.org/10.1007/s10967-014-3000-x

    Article  CAS  Google Scholar 

  11. Arafat AA, Salama MHM, El-Sayed SA, Elfeel AA (2017) Distribution of natural radionuclides and assessment of the associatedhazards in the environment of Marsa Alam-Shalateen area, Red Seacoast. Egypt J Radiat Res Appl Sci 10:219–232. https://doi.org/10.1016/j.jrras.2016.11.006

    Article  CAS  Google Scholar 

  12. Taskin H, Karavus AP, Topuzoglu A, Hidiroglu S, Karahan G (2009) Radionuclide concentrations in soil and lifetime cancerrisk due to gamma radioactivity in Kirklareli, Turkey. J Environ Radioact 100:49–53. https://doi.org/10.1016/j.jenvrad.2008.10.012

    Article  CAS  PubMed  Google Scholar 

  13. Sahin L, Hafizoğlu N, Cetinkaya H, Manisa K, Bozkurt E, Bicer A (2017) Assessment of radiological hazard parameters due to natural radioactivity in soils from granite-rich regions in Kütahya Province. Turkey Isotopes Environ Health Stud 53(2):212–221. https://doi.org/10.1080/10256016.2016.1207640

    Article  CAS  PubMed  Google Scholar 

  14. Kaya S, Kaya A, Çelik N, Kara RT, Taşkın H, Koz B (2020) Determination of the environmental natural radioactivity and mapping of natural background radioactivity of the Gumushane province, Turkey. J Radioanal Nucl Chem 326:933–957. https://doi.org/10.1007/s10967-020-07390-4

    Article  CAS  Google Scholar 

  15. Tabar E, Yakut H, Saç MM, Taskopru C, Ichedef M, Kus A (2017) Natural radioactivity levels and related risk assessment in soil samples from Sakarya, Turkey. J Radioanal Nucl Chem 313:249–259. https://doi.org/10.1007/s10967-017-5266-2

    Article  CAS  Google Scholar 

  16. Yildirim A, Solakci S, Eke C, Boztosun I (2021) Gamma spectrometry measurements of natural and artificial radioactivity of Saklıkent-Antalya and its correlation to quarries. Arab J Geosci 14:1613. https://doi.org/10.1007/s12517-021-08083-2

    Article  Google Scholar 

  17. Zaim N, Atlas H (2016) Assessment of radioactivity levels and radiation hazards using gamma spectrometry in soil samples of Edirne, Turkey. J Radioanal Nucl Chem 310:959–967. https://doi.org/10.1007/s10967-016-4908-0

    Article  CAS  Google Scholar 

  18. https://www.mevka.org.tr/Yukleme/Uploads/DsyxQMHur719201733251PM.pdf/Accessed 14 March 2021

  19. https://www.mevka.org.tr/Yukleme/Uploads/Dsyqs4v1X719201730126PM.pdf/ Accessed 14 March 2021

  20. Yaprak G, Aslani MAA (2010) External dose-rates for natural gamma emitters in soils from an agricultural land in West Anatolia. J Radioanal Nucl Chem 283:279–287. https://doi.org/10.1007/s10967-009-0361-7

    Article  CAS  Google Scholar 

  21. Eke C, Boztosun I (2015) Determination of activity concentration of natural and artificial radionuclides in sand samples from mediterranean coast of Antalya in Turkey. Kerntechnik 80(3):280–290. https://doi.org/10.3139/124.110474

    Article  Google Scholar 

  22. MC2 Analyzer Graphical software tool for digitizers running DPP-PHA firmware. https://www.caen.it/products/mc2analyzer/. Accessed 12 Jul 2021

  23. Agbalagba EO, Nenuwe ON, Owoade LR (2019) Geophysical survey of groundwater potential and radioactivity assessment of soil depth lithology for drinking water-quality determination. Environ Earth Sci. https://doi.org/10.1007/s12665-018-8023-0

    Article  Google Scholar 

  24. UNSCEAR (1982) Ionising radiation: sources and biological effect. In: United Nations scientific committee on the effect of atomic radiation, United Nations. ISBN: 9211422426

  25. Beretka J, Matthew PJ (1985) Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys 48(1):87–95. https://doi.org/10.1097/00004032-198501000-00007

    Article  CAS  PubMed  Google Scholar 

  26. Curie LA (1968) Limits for Qualitative Detection and Quantitative determination. Anal Chem 40(3):586–693

    Article  Google Scholar 

  27. Knoll G (2000) Radiation detection and measurement, 3rd edn. Wiley, USA

    Google Scholar 

  28. NEA-OECD (1979) Exposure to natural radioactivity in building materials. Report by NEA group of experts of the nuclear energy agency, OECD, Paris, France

  29. Arnedo MA, Rubiano JG, Alonso H, Tejera A, González A, Gonzalez J, Gil JM, Rodriguez R, Martel P, Bolivar JP (2017) Mapping natural radioactivity of soils in the eastern Canary Islands. J Environ Radioact 166(2):242–258. https://doi.org/10.1016/j.jenvrad.2016.07.010

    Article  CAS  PubMed  Google Scholar 

  30. Dizman S, Gorur FK, Keser R (2016) Determination of radioactivity levels of soil samples and the excess of lifetime cancer risk in Rize province. Turkey Int J Radiat Res 14(3):237–244. https://doi.org/10.18869/acadpub.ijrr.14.3.237

    Article  Google Scholar 

  31. Karataslı M, Turhan S, Varinlioglu A, Yegingil Z (2016) Natural and fallout radioactivity levels and radiation hazard evaluation in soil samples. Environ Earth Sci. https://doi.org/10.1007/s12665-016-5414-y

    Article  Google Scholar 

  32. Srilatha MC, Rangaswamy DR, Sannappa J (2015) Measurement of natural radioactivity and radiation hazard assessment in the soil samples of Ramanagara and Tumkur districts, Karnataka, India. J Radioanal Nucl Chem 303:993–1003. https://doi.org/10.1007/s10967-014-3584-1

    Article  CAS  Google Scholar 

  33. Abbasi A, Kurnaz A, Turhan S, Mirekthiary F (2020) Radiation hazards and natural radioactivity levels in surface soil samples from dwelling areas of North Cyprus. J Radioanal Nucl Chem 324:203–210. https://doi.org/10.1007/s10967-020-07069-w

    Article  CAS  Google Scholar 

  34. Goren E, Turhan S, Kurnaz A, Garad AMK, Duran C, Ugur FA, Yegingil Z (2017) Environmental evaluation of natural radioactivity in soil near a lignite-burning power plant in Turkey. Appl Radiat Isotopes 129:13–18. https://doi.org/10.1016/j.apradiso.2017.07.059

    Article  CAS  Google Scholar 

  35. Kurnaz A, Gezelge M, Hancerliogullari A, Cetiner MA, Turhan S (2016) Radionuclides content in grape molasses soil samples from Central Black Sea region of Turkey. Hum Ecol Risk Assess 22(6):1375–1385. https://doi.org/10.1080/10807039.2016.1185356

    Article  CAS  Google Scholar 

  36. El-Gamal H, Hussien MT, Saleh EE (2019) Evaluation of natural radioactivity levels in soil and various foodstuffs from Delta Abyan. Yemen J Radiat Res Appl Sci 12(1):226–233. https://doi.org/10.1080/16878507.2019.1646523

    Article  Google Scholar 

  37. Ghazwa A, Fauziah SH, Rahman IA (2016) Assessment of natural radioactivity levels and radiation hazards in agricultural and virgin soil in the State of Kedah, North of Malaysia. Sci World J 6178103:1–9. https://doi.org/10.1155/2016/6178103

    Article  CAS  Google Scholar 

  38. Adewoyin OO, Omeje M, Joel ES, Akinwumi SA, Ehi-Eromoseled CO, Embong Z (2018) Radionuclides proportion and radiological risk assessment of soil samples collected in Covenant University, Ota, Ogun State Nigeria. MethodsX 5:1419–1426. https://doi.org/10.1016/j.mex.2018.10.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Korkmaz ME, Agar O, Uzun E (2017) Assessment of natural radioactivity levels for Karadağ Mountain. Int J Radiat Res 15(4):399–406

    Google Scholar 

  40. Sahin L, Hafizoğlu N, Cetinkaya H, Manisa K, Bozkurt E, Biçer A (2017) Assessment of radiological hazard parameters due to natural radioactivity in soils from granite-rich regions in Kütahya Province. Turkey Isot Environ Health Stud 53(2):212–221. https://doi.org/10.1080/10256016.2016.1207640

    Article  CAS  Google Scholar 

  41. Kasumović A, Adrović F, Kasić A, Hankić E (2015) Natural radioactivity and radiation hazards assessment of soil samples from the area of Tuzla and Lukavac, Bosnia and Herzegovina. Isot Environ Health Stud 51(3):469–477. https://doi.org/10.1080/10256016.2015.1023798

    Article  CAS  Google Scholar 

  42. Abojassim AA, Rasheed LH (2021) Natural radioactivity of soil in the Baghdad governorate. Environ Earth Sci. https://doi.org/10.1007/s12665-020-09292-w

    Article  Google Scholar 

  43. Kritsananuwat R, Arae H, Fukushi M, Sahoo SK, Chanyotha S (2015) Natural radioactivity survey on soils originated from southern part of Thailand as potential sites for nuclear power plants from radiological viewpoint and risk assessment. J Radioanal Nucl Chem 305:487–499. https://doi.org/10.1007/s10967-015-3994-8

    Article  CAS  Google Scholar 

  44. Altikulac A, Turhan S, Gumus H (2016) Activity concentration of terrestrial and anthropogenic radionuclides (226Ra, 222Rn, 232Th, 40K, and 137Cs) in soil samples. Environ Earth Sci. https://doi.org/10.1007/s12665-015-4841-5

    Article  Google Scholar 

  45. El Samad O, Baydoun R, Abdallah M (2018) Radioactive map of soil at Mount Lebanon province and external dose assessment. Environ Earth Sci. https://doi.org/10.1007/s12665-018-7302-0

    Article  Google Scholar 

Download references

Acknowledgements

We respectfully commemorate Hüseyin Özkara for his support in collecting soil samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reyhan Ozaydin Ozkara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozaydin Ozkara, R., Eke, C. & Boztosun, I. A study on the activity concentrations of 226Ra, 232Th, 40K, 137Cs and radiological risk assessments in soil samples from Seydisehir and Beysehir districts of Konya in Turkey. J Radioanal Nucl Chem 330, 1017–1025 (2021). https://doi.org/10.1007/s10967-021-08046-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08046-7

Keywords

Navigation