Skip to main content
Log in

Spectrophotometric analysis of uranium concentration at trace level in PuO2 product

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

An extractive spectrophotometric method was developed for the determination of uranium concentration in plutonium oxide powder. A liquid–liquid extraction was employed to extract selectively uranium in trace level present in plutonium nitrate solution after converting all plutonium to in-extractable (III) oxidation state using non-corrosive salt free reducing agent. Concentration of uranium in organic phase was determined by spectrophotometry using 2-(5-bromo-2-pyridylazo-5-diethylaminophenol) as a chromogenic agent. Molar extinction coefficient was found to be 72,142 ± 2.0% L mol−1 cm−1 and the linear dynamic range was found to be 2–30 µg per aliquot with a relative standard deviation of 5%. This method can be employed for the determination of uranium concentration in plutonium oxide product of nuclear reprocessing.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3

Similar content being viewed by others

References

  1. Chaki A, Purohit RK, Mamallan R (2011) Low grade uranium deposits of India—a bane or boon. Energy Procedia 7:153–157. https://doi.org/10.1016/j.egypro.2011.06.020

    Article  Google Scholar 

  2. Uranium 2018: resources, production and demand (2018) Nuclear Energy Agency

  3. Bendict M, Pigford TM, Levi HW (1981) Nuclear chemical engineering, Chap 10, 2nd edn. McGraw Hill Book Co., New York

    Google Scholar 

  4. Das D, Bharadwaj SR (2013) Thoria-based Nuclear fuels. Springer, London

    Book  Google Scholar 

  5. Kim HS, Joung CY, Lee BH, Oh JY, Koo YH, Heimgartner P (2008) Applicability of CeO2 as a surrogate for PuO2 in a MOX fuel development. J Nucl Mater 378:98–104. https://doi.org/10.1016/j.jnucmat.2008.05.003

    Article  CAS  Google Scholar 

  6. Boomer DW, Powell MJ (1987) Determination of uranium in environmental samples using inductively coupled plasma mass spectrometry. Anal Chem 59:2810–2813. https://doi.org/10.1021/ac00150a019

    Article  CAS  PubMed  Google Scholar 

  7. Page AG, Gedbole SV, Hadraswala KH, Kulkarni MJ, Mallapurkar VS, Joshi BD (1983) Determination of ultra-trace amount of uranium by ICP-AES technique. Anal Lett 16:1005–1012. https://doi.org/10.1080/00032718308067958

    Article  CAS  Google Scholar 

  8. Premadas A, Srivastava PK (1999) Rapid laser fluorometric method for the determination of uranium in soil, ultrabasic rock, plant ash, coal fly ash and red mud samples. J Radioanal Nucl Chem 242(1):23–27. https://doi.org/10.1007/BF02345890

    Article  CAS  Google Scholar 

  9. Aggarwal SK (2016) Thermal ionisation mass spectrometry (TIMS) in nuclear science and technology—a review. Anal Methods 8:942–957. https://doi.org/10.1039/C5AY02816G

    Article  Google Scholar 

  10. Hasozbek A, Mathew K, Orlowicz G, Hui N, Srinivasan B, Soriano M, Narayanan U (2013) Uranium isotope dilution mass spectrometry (U-IDMS) technique using NBL uranium certified reference materials. J Radioanal Nucl Chem 296:447–451. https://doi.org/10.1007/s10967-012-2050-1

    Article  CAS  Google Scholar 

  11. Florence TM, Farrar Y (1963) Spectrophotometric determination of uranium with 4-(2-Pyridylazo) resorcinol. Anal Chem 35:1613–1616. https://doi.org/10.1021/ac60204a020

    Article  CAS  Google Scholar 

  12. Rao RVS, Dhamodharan K, Kumar GS, Ravi TN (2000) Determination of uranium and plutonium in high active solutions by extractive spectrophotometry. J Radioanal Nucl Chem 246(2):433–435. https://doi.org/10.1023/a:1006788321971

    Article  CAS  Google Scholar 

  13. Mukhopadhyay C, Suba M, Sivakumar D, Dhamodharan K, Rao RVS (2019) Cloud point extractive spectrophotometric method for determinationof uranium in rafnate streams during spent nuclear fuel reprocessing. J Radioanal Nucl Chem 322:743–750. https://doi.org/10.1007/s10967-019-06704-5

    Article  CAS  Google Scholar 

  14. Florence TM, Johnson DA, Farrar YJ (1969) Spectrophotometric determination of uranium(V1) with 2-(2-Pyridylazo)-5-diethylaminophenol. Anal Chem 41(12):1652–1654. https://doi.org/10.1021/ac60281a030

    Article  CAS  Google Scholar 

  15. Johnson DA, Florence TM (1971) Spectrophotometric determination of uranium(V1) with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol. Anal Chim Acta 53:73–79. https://doi.org/10.1016/s0003-2670(01)80072-6

    Article  CAS  Google Scholar 

  16. Das SK, Kedari CS, Tripathi SC (2010) Spectrophotometric determination of trace amount of uranium(VI) in diferent aqueous and organic streams of nuclear fuel processing using 2-(5-bromo-2-pyridylazo-5-diethylaminophenol). J Radioanal Nucl Chem 285:675–681. https://doi.org/10.1007/s10967-010-0647-9

    Article  CAS  Google Scholar 

  17. Muhammad HK, Peter W, Nick E (2006) Spectrophotometric determination of uranium with arsenazo-III in perchloric acid. Chemosphere 63(7):1165–1169. https://doi.org/10.1016/j.chemosphere.2005.09.060

    Article  CAS  Google Scholar 

  18. Johnson DA, Florence TM (1975) A study of some pyridylazo dyestuffs as chromogenic reagents and the elucidation of the nature of their metal complex spectra. Talanta 22:253–265. https://doi.org/10.1016/0039-9140(75)80063-4

    Article  CAS  PubMed  Google Scholar 

  19. BARC Report—1539 (1991) Direct spectrophotometric method for the determination of uranium with Br–PADAP in aqueous and organic streams of PUREX and THOREX process. Bhabha Atomic Research Centre, Mumbai

  20. Singh SK, Misra SK, Pandit SS, Parikh KJ, Tripathi SC (2009) A fast and sensitive method for the determination of uranium in the Thorex Process streams. J Radioanal Nucl Chem 280:33–39. https://doi.org/10.1007/s10967-008-7405-2

    Article  CAS  Google Scholar 

  21. Cleveland JM (1979) The chemistry of plutonium. American Nuclear Society, University of Michigan

    Google Scholar 

  22. Schulz WW (1990) Science and technology of tributyl phosphate, vol 3. Boca Raton CRC Press, Florida

    Google Scholar 

  23. Yarbro SL, Schreiber SB, Ortiz EM, Ames RL (1998) Reducing Pu(IV) to Pu(III) with hydroxylamine in nitric acid solutions. J Radioanal Nucl Chem 235:21–25. https://doi.org/10.1007/bf02385931

    Article  CAS  Google Scholar 

  24. Natarajan R, Baldev R (2007) Fast reactor fuel reprocessing technology in India. J Nucl Sci Technol 44:393–397. https://doi.org/10.1080/18811248.2007.9711299

    Article  CAS  Google Scholar 

  25. Natarajan R (1998) Challenges in fast reactor fuel reprocessing. IANCAS Bull 14:27–32

    Google Scholar 

  26. Kaya A, Kudo H, Shirahashi J, Suzuki S (1967) The purification of plutonium by anion exchange in nitric acid. J Nucl Sci Technol 4:289–292. https://doi.org/10.1080/18811248.1967.9732746

    Article  CAS  Google Scholar 

  27. Karekar CV, Chander K, Nair GM, Natarajan PR (1986) Determination of plutonium and uranium in the same aliquot by potentiometric titration. J Radioanal Nucl Chem 107:297–305. https://doi.org/10.1007/bf02166623

    Article  CAS  Google Scholar 

  28. Davies W, Gray W (1964) A rapid and specific titrimetric method for the precise determination of uranium using iron(II) sulphate as reductant. Talanta 11:1203–1211. https://doi.org/10.1016/0039-9140(64)80171-5

    Article  CAS  Google Scholar 

  29. Ganesh S, Khan F, Ahmed M, Pandey S (2010) Sequential determination of uranium (IV), free acidity and hydrazine in a single aliquot. J Radioanal Nucl Chem 286:33–37. https://doi.org/10.1007/s10967-010-0663-9

    Article  CAS  Google Scholar 

  30. Lee MH, Park YJ, Kim WH (2007) Absorption spectroscopic properties for Pu (III, IV and VI) in nitric and hydrochloric acid media. J Radioanal Nucl Chem 273:375–382. https://doi.org/10.1007/s10967-007-6848-1

    Article  CAS  Google Scholar 

  31. Mahildoss DJ, Ravi TN (2012) Spectrophotometric determination of plutonium III, IV, and VI concentrations in nitric acid solution. J Radioanal Nucl Chem 294:87–91. https://doi.org/10.1007/s10967-012-1614-4

    Article  CAS  Google Scholar 

  32. Dhamodharan K, Pius A (2017) Alternative method for determination of specific activity of plutonium present in the irradiated fuel solution. Ann Nucl Energy 110:1197–1201. https://doi.org/10.1016/j.anucene.2017.08.012

    Article  CAS  Google Scholar 

  33. U.S. Department of Energy (1994) Recovery of silver from CEPOD anolyte solutions. Pacific Northwest Laboratory Richland, Washington

    Google Scholar 

  34. Biddle P, Miles JH (1968) Rate of reaction of nitrous acid with hydrazine and with sulphamic acid: Its application to nitrous acid control in two-phase industrial systems. J Inorg Nucl Chem 30:1291–1297. https://doi.org/10.1016/0022-1902(68)80558-5

    Article  CAS  Google Scholar 

  35. Sini K, Satyabrata M, Mallika C, Pandey NK, Falix L, Mudali UK, Natarajan RJ (2013) Reduction of uranyl nitrate ions in a continuous flow electrochemical reactor. J Radioanal Nucl Chem 295:1505–1510. https://doi.org/10.1007/s10967-012-1940-6

    Article  CAS  Google Scholar 

  36. Sini K, Satyabrata M, Mallika C, Pandey NK, Falix L, Mudali UK, Natarajan RJ (2013) Kinetics and optimisation of process parameters for electrochemical generation of uranous ions in nitric acid–hydrazine media. J Radioanal Nucl Chem 298:301–309. https://doi.org/10.1007/s10967-013-2470-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Authors are thankful to Mrs. C. Shibina of Process & Radio Chemical Laboratory, Reprocessing Group for valuable contributions during experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Subba Rao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhopadhyay, C., Dhamodharan, K., Sharma, P.K. et al. Spectrophotometric analysis of uranium concentration at trace level in PuO2 product. J Radioanal Nucl Chem 331, 179–186 (2022). https://doi.org/10.1007/s10967-021-08034-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08034-x

Keywords

Navigation