Skip to main content
Log in

U and Pu separation with U/TEVA resin: Influence of some parameters on chromatographic cycle performances

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Due to unexpected Pu behavior using the U/TEVA resin and the most-recognized reagents, some key separation stages need to be studied for the U–Pu separation: Pu valency adjustment, Pu elution solution composition, resin loading rate and Pu elution solution stability over time. The new Pu elution solution developped in the study, composed of 3 × 10–3 mol L−1 ascorbic acid / 3 × 10–3 mol L−1 sulfamic acid / 2 mol L−1 HNO3, helps obtaining a more robust method: recovery yields over 80% and decontamination factor up to 2 × 104. The best separation performances were obtained when the new Pu elution solution was freshly prepared, the resin loading rate did not exceed 30% and with a waiting time for the valency adjustment between the addition of H2O2 and the start of the chromatographic cycle set at 42 h regardless the Pu quantity involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Quemet A, Ruas A, Dalier V, Rivier C (2019) Development and comparison of high accuracy thermal ionization methods for uranium isotope ratios determination in nuclear fuel. Int J Mass Spectrom 438:166–174. https://doi.org/10.1016/j.ijms.2019.01.008

    Article  CAS  Google Scholar 

  2. Quemet A, Buravand B, Catanese B, Huot P, Dalier V, Ruas A (2020) Monitoring the dissolution of a uranium-plutonium oxide from a spent fuel solution: using plutonium ratio and TIMS for isotope ratio measurements. J Radioanal Nucl Chem 326:255–260. https://doi.org/10.1007/s10967-020-07311-5

    Article  CAS  Google Scholar 

  3. Garcia-Alonso J (2014) I and Rodriguez-Gonzalez P, Isotope dilution mass spectrometry. Anal Bioanal Chem 406:2739–2740. https://doi.org/10.1007/s00216-014-7662-6

    Article  CAS  Google Scholar 

  4. Grate JW, O’Hara MJ, Farawila AF, Douglas M, Haney MM, Petersen SL, Maiti TC, Aardahall CL (2011) Extraction chromatographic methods in the sample preparation sequence for TIMS of plutonium isotopes, analytical chemistry. Anal Chem 83(23):9086–9091. https://doi.org/10.1021/ac202150v

    Article  CAS  PubMed  Google Scholar 

  5. Pietri CE, Freeman BP, Weiss J (1981) R, The quantitative ion exchange separation of plutonium from impurities. Rev Sci Instrum 52(8):p1252-1255

    Article  Google Scholar 

  6. Sturm M, Richter S, Aregbe Y, Wellum R, Prohaska T (2016) Optimized chemical separation and measurement by TE TIMS using carburized filaments for uranium isotope ratio measurements applied to plutonium chronometry. Anal Chem 88:6223–6230. https://doi.org/10.1021/acs.analchem.5b03852

    Article  CAS  PubMed  Google Scholar 

  7. Solatie D, Carbol P, Betti M, Bocci F, Hiernaut T, Rondinella VV, Cobos J (2000) Ion chromatography inductively coupled plasma mass spectrometry (IC-ICP-MS) and radiometric techniques for the determination of actinides in aqueous leachate solutions from uranium oxide; Fresenius’. J Anal Chem 68:88–94. https://doi.org/10.1007/s002160000536

    Article  Google Scholar 

  8. Michel H, Barci-Funel G, Dalmasso J, Ardisson G (1999) One step ion exchange process for the radiochemical separation of americium, plutonium and neptunium in sediments. J Radioanal Nucl Chem 240:467–470

    Article  CAS  Google Scholar 

  9. Liao H, Wu F, Yamada M, Tan M, Chen J (2008) Determination of plutonium isotopes in freshwater lake sediments by sector-field ICP-MS after separation using ion-exchange chromatography. Appl Radiat Isot 66(8):1138–1145. https://doi.org/10.1016/j.apradiso.2008.01.001

    Article  CAS  PubMed  Google Scholar 

  10. Horwitz E. Ph, (1995) Separation and preconcentration of actinides by extraction chromatography using a supported liquid anion exchanger: application to the characterization of high-level nuclear waste solutions; Analytica Chimica Acta, 310: 63

  11. Nuclear fuel technology — Determination of the isotopic and elemental uranium and plutonium concentrations of nuclear materials in nitric acid solutions by thermal-ionization mass spectrometry. ISO 8299:2019;

  12. Morgenstern A, Apostolidis C, Carlos-Marquez R, Mayer K, Molinet R (2002) Single-column extraction chromatographic separation of U, Pu, Np and Am. Radiochim Acta 90:81–85. https://doi.org/10.1524/ract.2002.90.2_2002.81

    Article  CAS  Google Scholar 

  13. Horwitz EP, Dietz ML (1992) Separation and preconcentration of uranium from acidic media by extraction chromatography. Anal Chim Acta 266:25–37

    Article  CAS  Google Scholar 

  14. Maillard Ch, Adnet J (2001) M, Plutonium(IV) Peroxide formation in nitric medium and kinetics of pu(vi) reduction by hydrogen peroxide. Radiochim Acta 89(8):485–490

    Article  CAS  Google Scholar 

  15. Roudil D, Rigaux C, Rivier C, Hubinois JC, Aufore L (2012) CETAMA Contribution to safeguards and nuclear forensic analysis based on nuclear reference materials. Procedia Chem 7:709–715. https://doi.org/10.1016/j.proche.2012.10.108

    Article  CAS  Google Scholar 

  16. Hydroxylammonium chloride - Brief Profile - ECHA; https://echa.europa.eu/brief-profile/-/briefprofile/100.024.362

  17. Gourisse D, Madic Ch (1975) Les reactions d’oxydoréduction des éléments transuraniens. Gmelin Handbuch, Transurane, Vol D1, Chemie in losung, Springer-Verlag

  18. Koltunov VS, Krot NN (1985) New investigation of redox reactions of neptunium and plutonium. Sov Radiochem 27(1):83–107

    Google Scholar 

  19. Brunstad A (1957) Oxidation of Plutonium (III) by Sodium Nitrite. General Electric Company. https://doi.org/10.2172/4345806

    Article  Google Scholar 

  20. Koltunov VS, Marchenko VI (1973) Reaction between plutonium(III) and nitrous acid. I Equilibrium Sov Radiochem 15(5):754–756

    Google Scholar 

  21. Nuclear energy - Nuclear fuel technology - Determination of plutonium in nitric acid solutions by spectrophotometry (ISO 9463:2019)

  22. Pembridge J. R. & Stedman G, Kinetic, Mechanism and stoicheiometry of the oxidation of hydroxylamine by Nitric acid – J. C. S. Dalton, p. 1657 -1663, January 1979

  23. Gowland RJ, Stedman G (1980) Kinetic and products studies on the decomposition of hydroxylaminein nitric acid. J Inorg Nucl Chem 43(11):2859–2862

    Article  Google Scholar 

  24. Raman S, Ashcraft R, Vial M, Klasky ML (2005) Oxidation of hydroxylamine by nitrous and nitric acids. model development from first principle SCRF calculations. J Phys Chem 109:8526–8536

    Article  CAS  Google Scholar 

  25. Bennett M. R, Brown G. M, Maya L, Posey F, (1982) Oxidation of hydroxylamine by nitrous and nitric acid, rapport edss-tcNFT, Web. https://doi.org/10.1021/ic00136a066

  26. Bunton CA, Dahn H, Loewe L (1959) Oxidation of ascorbic acid and similar reductones by nitrous acid. Nature 183:163–165

    Article  CAS  Google Scholar 

  27. Beake B. D, Moodie R. B and Smith D, Oxidation of ascorbic acid by nitrous acid: conditions where autoxidation of nitric oxide is rate determining, J. Chem. Soc., Perkin Trans. 2, p. 1251–1252, 1995

  28. Zebrovsky E and Feber R. C, Sulfamic acid in the redox process. General electric company, July 15, 1948

  29. Tober F. W and Russell E. R, Concentration of Plutonium by cation exchange stabilization of Pu(III) in nitric acid, Chemistry – Separation PROCESSES for plutonium and uranium (M-3679 22nd Ed., Rev.1),February 1959

  30. Connick R. E and Mc Vey W. H, Note on the oxidation of plutonium (III) by nitrate ion; in the Transuranium elements, Glenn T. Seaborg, 1949

  31. Dukes EK (1960) Kinetics and mechanisms for the oxidation of trivalent plutonium by nitrous acid J. Soc, Am Chem. https://doi.org/10.1021/ja01486a003

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christophe Maillard or Didier Maloubier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maillard, C., Maloubier, D., Boulay, O. et al. U and Pu separation with U/TEVA resin: Influence of some parameters on chromatographic cycle performances. J Radioanal Nucl Chem 330, 579–587 (2021). https://doi.org/10.1007/s10967-021-07986-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07986-4

Keywords

Navigation