Skip to main content
Log in

Comparative transcriptome analysis providing inhibitory mechanism of lung cancer A549 cells by radioactive 125I seed

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, A549 cells treated by radioactive 125I seed were sequenced using Illumina HiSeq PE150, and then the transcriptome was analyzed using bioinformatics methods. Gene ontology classification analysis showed that differentially expressed genes (DEGs) belonged to 10 categories, and low-dose group, medium-dose group and high-dose group 125I treatment obtained 440 DEGs, 4275 DEGs and 2850 DEGs, respectively. Additionally, DEGs were involved in tumor-related pathways, endoplasmic reticulum protein processing and cell cycle pathways. Therefore, radioactive 125I seed can significantly inhibit the growth of lung cancer, which provide a theoretical basis for the clinical 125I seed to effectively treat lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Article  Google Scholar 

  2. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F (2015) He J (2016) Cancer statistics in China. CA Cancer J Clin 66(2):115–132

    CAS  Google Scholar 

  3. Feng RM, Zong YN, Cao SM, Xu RH (2019) Current cancer situation in China: good or bad news from the 2018 Global Cancer Statistics? Cancer Commun 39(1):22

    Google Scholar 

  4. Timmerman R, McGarry R, Yiannoutsos C, Papiez L, Tudor K, DeLuca J, Fletcher J (2006) Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer. J Clin Oncol. 24(30):4833–4839

    PubMed  Google Scholar 

  5. Viswanathan AN, Erickson BA, Ibbott GS, Small W Jr, Eifel PJ (2017) The american college of radiology and the american brachytherapy society practice parameter for the performance of low-dose-rate brachytherapy. Brachytherapy 16(1):68–74

    PubMed  Google Scholar 

  6. Wang H, Wang J, Jiang Y, Li J, Tian S, Ran W, Gao Y (2013) The investigation of 125 I seed implantation as a salvage modality for unresectable pancreatic carcinoma. J Exp Clin Cancer Res 32(1):106

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Li J, Yu M, Xiao Y, Yang L, Zhang J, Ray E, Yang X (2013) Computed tomography fluoroscopy-guided percutaneous 125I seed implantation for safe, effective and real-time monitoring radiotherapy of inoperable stage T1–3N0M0 non-small-cell lung cancer. Mol Clin Oncol 1(6):1019–1024

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Beyer DC, Priestley JB Jr (1997) Biochemical disease-free survival following 125I prostate implantation. Int J Radiat Oncol 37(3):559–563

    CAS  Google Scholar 

  9. Guo JH, Teng GJ, Zhu GY, He SC, Fang W, Deng G, Li GZ (2008) Self-expandable esophageal stent loaded with 125I seeds: initial experience in patients with advanced esophageal cancer. Radiology 247(2):574–581

    PubMed  Google Scholar 

  10. Zhang CF, Wang YX, Tian HB, Duan ZY (2002) Preparation of iodine-125 seed - part i: iodination of the silver rod. J Radioanal Nucl Chem 252(1):161–163

    CAS  Google Scholar 

  11. Sakr TM, Fasih TW, Amin M (2017) Nano-titania: a novel purification and concentration adsorbent for 125I production for medical uses. J Radioanal Nucl Chem 314(2):1309–1317

    CAS  Google Scholar 

  12. Wang J, Sui A (2006) Jia Y (2006) Unresectable gastric cancer treated with 125I radioactive seeds implantion simply:a report of 9 cases. Chin J Practical Surgery 07:0530–0532

    Google Scholar 

  13. Rustgi SN, Hahn SS (1992) Advantages of using high activity 125I seeds in temporary interstitial breast implants. Med Dosim 17(4):217–220

    CAS  PubMed  Google Scholar 

  14. Yao LH, Yang RJ, Wang JJ et al (2017) In vitro Dosimetric Study of Biliary Stent Loaded with Radioactive 125I Seeds. Chin Med J 130(009):1093–1099

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wuu CS, Ennis RD, Schiff PB, Lee EK, Zaider M (2000) Dosimetric and volumetric criteria for selecting a source activity and a source type (125I or 103Pd) in the presence of irregular seed placement in permanent prostate implants. Int J Radiat Oncol 47(3):815–820

    CAS  Google Scholar 

  16. Li J, Zhang L, Xie Q, Wang W, Hua Y, Sun Z, Hu S (2019) How many times 125I seed implantation brachytherapy can be repeated for pulmonary metastases: clinical efficacy and complications. J Contemp Brachyther 11(1):35

    Google Scholar 

  17. Wang Y, Lu J, Guo JH, Zhu HD, Chen L, Wang C, Teng GJ (2018) A novel tracheobronchial stent loaded with 125i seeds in patients with malignant airway obstruction compared to a conventional stent: a prospective randomized controlled study. EBioMedicine 33:269–275

    PubMed  PubMed Central  Google Scholar 

  18. Li W, Zheng Y, Li Y, Guan J, Jiang J, Yu Y, Zheng X, Yang L (2017) Effectiveness of 125I seed implantation in the treatment of non-small cell lung cancer during R2 resection. Oncol Lett 14(6):6690–6700

    PubMed  PubMed Central  Google Scholar 

  19. Huo XD, Huo B, Wang HX, Wang L, Cao Q, Zheng GJ, Wang JJ, Chai S, Zhang ZC, Yang K, Niu YJ, Wang HT (2017) Implantation of computed tomography-guided Iodine-125 seeds in combination with chemotherapy for the treatment of stage III non-small cell lung cancer. J Contemp Brachyther 9(6):527

    Google Scholar 

  20. Wang Z, Zhao Z, Lu J, Chen Z, Mao A, Teng G, Liu F (2015) A comparison of the biological effects of 125I seeds continuous low-dose-rate radiation and 60Co high-dose-rate gamma radiation on non-small cell lung cancer cells. PLOS ONE. 10(8):e0133728

    PubMed  PubMed Central  Google Scholar 

  21. Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, Parks WP (1973) In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. JNCI- J Natl Cancer I 51(5):1417–1423

    CAS  Google Scholar 

  22. Ortega E, Pérez-Arnaiz C, Rodríguez V, Janiak C, Busto N, Garcia B, Ruiz J (2021) A 2-(benzothiazol-2-yl)-phenolato platinum(II) complex as potential photosensitizer for combating bacterial infections in lung cancer chemotherapy. Eur J Med Chem 222:113600

    CAS  PubMed  Google Scholar 

  23. Zhang Y, Yao YF, Fu YJ, Yuan ZX, Wu XP, Wang TS, Hong ZC, Yang YF, Wu HZ (2021) Inhibition effect of oxyepiberberine isolated from coptis chinensis franch on non-small cell lung cancer based on a network pharmacology approach and experimental validation. J Ethnopharmacol. 2021(3):114267

    Google Scholar 

  24. Zhao L, Zheng H, Jiang P (2021) circCD151 promotes GLI2 expression by regulating miR30d5p and enhancing proliferation, invasion and stemness of lung cancer. Mol Med Rep 24(4):699

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Dong LL, Yin LH, Li RM, Xu YW, Han X, Qi Y (2021) Dioscin alleviates lung ischemia/reperfusion injury by regulating FXR-mediated oxidative stress, apoptosis, and inflammation. Eur J Pharmacol. 908:174321

    CAS  PubMed  Google Scholar 

  26. Yang YH, Xie Q, Zhao ZN, He LZ, Chan L, Liu YX, Chen YL, Bai MJ, Pan T, Qu YN, Ling L, Chen TF (2017) Functionalized selenium nanosystem as radiation sensitizer of 125I seeds for precise cancer therapy. Acs Appl Mater Inter 9(31):25857–25869

    CAS  Google Scholar 

  27. Zhang DG, Xu HW, Wang YQ, Wang KX, Wang YX, Wu B, Zhu GY, Peng LS, Gao J, Li ZS (2019) 125I radiation downregulates TRPV1 expression through miR-1246 in neuroblastoma cells. Oncol Rep 42(1):243–252

    PubMed  Google Scholar 

  28. Hu LL, Wang H, Zhao Y (2016) Wang JJ (2016) 125I seeds radiation induces paraptosis-like cell death via PI3K/AKT signaling pathway in HCT116 cells. Biomed Res Int 9859:1–11

    Google Scholar 

  29. Hu LL, Wang H, Huang L, Zhao Y, Wang JJ (2016) The protective roles of ROS-mediated mitophagy on 125I seeds radiation induced cell death in HCT116 cells. Oxid Med Cell Longev 2016:1–18

    Google Scholar 

  30. Tian YH, Xie Q, He J, Luo XJ, Zhou T, Liu Y, Huang ZP, Tian YM, Sun D, Yao KT (2015) Radioactive 125I seeds inhibit cell growth and epithelial-mesenchymal transition in human glioblastoma multiforme via a ROS-mediated signaling pathway. BMC Cancer 15(1):1

    PubMed  PubMed Central  Google Scholar 

  31. Zhuang HQ, Wang JJ, Liao AY, Wang JD, Zhao Y (2009) The biological effect of 125 I seed continuous low dose rate irradiation in CL187 cells. J Exp Clin Canc Res 28(1):12

    Google Scholar 

  32. Zhang J, Zhu Y, Dong M, Yang J, Weng W, Teng L (2018) Iodine-125 interstitial brachytherapy reduces tumor growth via Warburg effect inhibition in non-small cell lung cancer A549 xenografts. Oncol Lett 16(5):5969–5977

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Qu A, Wang H, Li JN, Wang JJ, Liu JJ, Hou YZ, Huang L, Zhao Y (2014) Biological effects of 125I seeds radiation on A549 lung cancer cells: G2/M arrest and enhanced cell death. Cancer Invest 32(6):209–217

    CAS  PubMed  Google Scholar 

  34. Stewart A, Parashar B, Patel M, O’Farrell D, Biagioli M, Devlin P, Mutyala S (2016) American brachytherapy society consensus guidelines for thoracic brachytherapy for lung cancer. Brachytherapy 15(1):1–11

    CAS  PubMed  Google Scholar 

  35. Ji Z, Jiang YL, Guo FX, Peng R, Sun HT, Wang PF, Fan JH, Wang JJ (2019) Radiation-related adverse effects of CT-guided Implantation of 125I seeds for thoracic recurrent and/or metastatic malignancy. Sci Rep 9(1):1–7

    Google Scholar 

  36. Song WC, Liu F, Liu L, Zhang LW, Wang HZ (2021) A radiation irradiation device for cancer cells. China: CN212800387U 2021–03–26

  37. Chen HH, Jia RF, Yu L, Zhao MJ, Shao CL (2009) Bystander effects induced by continuous low-dose-rate 125i seeds potentiate the killing action of irradiation on human lung cancer cells in vitro. Int J Radiat Oncol 72(5):1560–1566

    Google Scholar 

  38. Wang ZM, Lu J, Zhang LY, Lin XZ, Chen KM, Chen ZJ, Liu FJ, Yuan FH, Teng GJ, Mao AW (2015) Biological effects of low-dose-rate irradiation of pancreatic carcinoma cells in vitro using 125I seeds. World J Gastroentero 21(8):2336–2342

    CAS  Google Scholar 

  39. Yu D, Li Y, Ming Z, Wang H, Dong Z, Qiu L, Wang T (2018) Comprehensive circular RNA expression profile in radiation-treated HeLa cells and analysis of radioresistance-related circRNAs. PEERJ. 6:e5011

    PubMed  PubMed Central  Google Scholar 

  40. Girdhani S, Lamont C, Hahnfeldt P, Abdollahi A, Hlatky L (2012) Proton irradiation suppresses angiogenic genes and impairs cell invasion and tumor growth. Radiat Res 178(1):33–45

    CAS  PubMed  Google Scholar 

  41. Fujita M, Otsuka Y, Imadome K, Endo S, Yamada S, Imai T (2012) Carbon-ion radiation enhances migration ability and invasiveness of the pancreatic cancer cell, PANC-1, in vitro. Cancer Sci 103(4):677–683

    CAS  PubMed  PubMed Central  Google Scholar 

  42. George J, Lim JS, Jang SJ, Cun Y, Ozretić L, Kong G, Leenders F, Lu X et al (2015) Comprehensive genomic profiles of small cell lung cancer. Nature 524(7563):47–53

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang T, Mo ZQ, Duan G, Tang R, Lu M (2021) 125I seed promotes apoptosis in non-small lung cancer cells via the p38 mapk-mdm2-p53 signaling pathway. Front Oncol. 11:582511

    PubMed  PubMed Central  Google Scholar 

  44. Mohrherr J, Haber M, Breitenecker K, Aigner P, Moritsch S, Voronin V et al (2019) JAK-STAT inhibition impairs K-RAS-driven lung adenocarcinoma progression. Int J Cancer 145:3376–3388

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang L, Lin C, Jin Q (2020) 125I seeds irradiation inhibits tumor growth and induces apoptosis by Ki-67, P21, Survivin, Livin and Caspase-9 expression in lung carcinoma xenografts. Radiat Oncol 15(1):238

    PubMed  PubMed Central  Google Scholar 

  46. Yan WL, Huo XD, Wang HX, Huo B, Guo YT, Dong H, Zheng GJ, Wang JJ, Chai SD, Wang HT, Zhang ZC (2018) 125I inhibited the NSCLC both in vivo and in vitro. Int J Clin Exp Patho 11(3):1265–1272

    Google Scholar 

  47. Xiang GL, Zhu XH, Lin CZ, Wang LJ, Sun Y, Gao YW, Wang FF (2017) 125I seed irradiation induces apoptosis and inhibits angiogenesis by decreasing HIF-1alpha and VEGF expression in lung carcinoma xenografts. Oncol Rep 37(5):3075–3083

    CAS  PubMed  Google Scholar 

  48. Rong JH, Li D, Li YL (2021) Lobaplatin enhances radioactive 125i seed-induced apoptosis and anti-proliferative effect in non-small cell lung cancer by suppressing the AKT/mTOR pathway. Oncotargets Ther 14:289–300

    Google Scholar 

  49. Taghavi A, Akbari ME, Hashemi-Bahremani M, Nafissi N, Khalilnezhad A, Poorhosseini SM, Hashemi-Gorji F, Yassaee VR (2016) Gene expression profiling of the 8q22-24 position in human breast cancer: TSPYL5, MTDH, ATAD2 and CCNE2 genes are implicated in oncogenesis, while WISP1 and EXT1 genes may predict a risk of metastasis. Oncol Lett 12(5):3845–3855

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Martínez MJ, Chico Y, Ochoa B (2018) Insights into SND1 oncogene promoter regulation. Front Oncol 8:606

    PubMed  PubMed Central  Google Scholar 

  51. Zhu J, Gu W, Yu C (2019) MATN1-AS1 promotes glioma progression by functioning as ceRNA of miR-200b/c/429 to regulate CHD1 expression. Cell Proliferat. 53(1):e12700

    Google Scholar 

Download references

Acknowledgements

The program was supported by National Natural Science Foundation of China (21876179, 22142007 and 22006001), Natural Science Foundation of Anhui Province (1808085QA13 and 2008085MC65), China Postdoctoral Science Foundation (2020T130117ZX, 2020M671914 and 2020B470) and Natural Science Foundation of Anhui Higher Education Institutions (KJ2017A935).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinwu Chen or Wencheng Song.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Bao, J., Chen, J. et al. Comparative transcriptome analysis providing inhibitory mechanism of lung cancer A549 cells by radioactive 125I seed. J Radioanal Nucl Chem 330, 821–831 (2021). https://doi.org/10.1007/s10967-021-07984-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07984-6

Keywords

Navigation