Skip to main content
Log in

Adsorption characteristics of Eu(III) on colloidal bentonite particles in aqueous solution: impact of colloid concentration, pH, foreign ions, and temperature

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The adsorption characteristics of Eu(III) on colloidal bentonite particles were investigated by batch experiments as functions of colloid concentration, pH, foreign ions, and temperature. Bentonite colloids displayed remarkable adsorption ability to Eu(III), the Eu(III) adsorption was significantly affected by solution chemistry. The Eu(III) adsorption increased with colloids concentration and pH increasing. Divalent cations (Ca2+, Mg2+ and Sr2+) and anions (Cl and SO42−) inhibited Eu(III) adsorption, whereas PO43− greatly enhanced Eu(III) adsorption. High temperature was beneficial for Eu(III) adsorption, the adsorption process was a spontaneous endothermic process. The results suggested that colloids could acted as an efficient carrier for Eu(III) transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Geckeis H, Ngo Manh T, Bouby M, Kim JI (2003) Aquatic colloids relevant to radionuclide migration: characterization by size fractionation and ICP-mass spectrometric detection. Colloid Surfaces A 217(1–3):101–108

    Article  CAS  Google Scholar 

  2. Nishad S, Al-Raoush RI (2021) Colloid retention and mobilization mechanisms under different physicochemical conditions in porous media: a micromodel study. Powder Technol 377:163–173

    Article  CAS  Google Scholar 

  3. Ghiasi B, Niksokhan MH, Mahdavi Mazdeh A (2020) Co-transport of chromium(VI) and bentonite colloidal particles in water-saturated porous media: Effect of colloid concentration, sand gradation, and flow velocity. J Contam Hydrol 234:103682

    Article  CAS  PubMed  Google Scholar 

  4. Fan QH, Xu JZ, Niu ZW, Li P, Wu WS (2012) Investigation of Cs(I) uptake on Beishan soil combined batch and EDS techniques. Appl Radiat Isot 70(1):13–19

    Article  CAS  PubMed  Google Scholar 

  5. Chen Y, Zhu C, Sun Y, Duan H, Ye W, Wu D (2012) Adsorption of La(III) onto GMZ bentonite: effect of contact time, bentonite content, pH value and ionic strength. J Radioanal Nucl Chem 292(3):1339–1347

    Article  CAS  Google Scholar 

  6. Patel MA, Kar AS, Kumar S, Das MK, Raut VV, Tomar BS (2018) Effect of sulfate on sorption of Eu(III) by Na-montmorillonite. Radiochim Acta 107:1–14

    Google Scholar 

  7. Rabung T, Pierret MC, Bauer A, Geckeis H, Bradbury MH, Baeyens B (2005) Sorption of Eu(III)/Cm(III) on Ca-montmorillonite and Na-illite. Part 1: batch sorption and time-resolved laser fluorescence spectroscopy experiments. Geochim Cosmochim Ac 69(23):5393–5402

    Article  CAS  Google Scholar 

  8. Songsheng L, Hua X, Mingming W, Xiaoping S, Qiong L (2011) Sorption of Eu(III) onto Gaomiaozi bentonite by batch technique as a function of pH, ionic strength, and humic acid. J Radioanal Nucl Chem 292(2):889–895

    Article  Google Scholar 

  9. Pan DQ, Fan QH, Li P, Liu SP, Wu WS (2011) Sorption of Th(IV) on Na-bentonite: effects of pH, ionic strength, humic substances and temperature. Chem Eng J 172(2–3):898–905

    Article  CAS  Google Scholar 

  10. Alonso U, Missana T, Patelli A, Rigato V (2007) Bentonite colloid diffusion through the host rock of a deep geological repository. Phy Chem Earth 32(1–7):469–476

    Article  Google Scholar 

  11. Missana T, Garcı́a-Gutiérrez M, Alonso Ú (2004) Kinetics and irreversibility of cesium and uranium sorption onto bentonite colloids in a deep granitic environment. Appl Clay Sci 26(1–4):137–150

    Article  CAS  Google Scholar 

  12. Degueldre C, Triay I, Kim J-I, Vilks P, Laaksoharju M, Miekeley N (2000) Groundwater colloid properties: a global approach. Appl Geochem 15(7):1043–1051

    Article  CAS  Google Scholar 

  13. Bouby M, Geckeis H, Lützenkirchen J, Mihai S, Schäfer T (2011) Interaction of bentonite colloids with Cs, Eu, Th and U in presence of humic acid: a flow field-flow fractionation study. Geochim Cosmochim Acta 75(13):3866–3880

    Article  CAS  Google Scholar 

  14. Zanker H, Hennig C (2014) Colloid-borne forms of tetravalent actinides: a brief review. J Contam Hydrol 157(1):87–105

    Article  PubMed  Google Scholar 

  15. Ye WM, Cui YJ, Qian LX, Chen B (2009) An experimental study of the water transfer through confined compacted GMZ bentonite. Eng Geol 108(3–4):169–176

    Article  Google Scholar 

  16. Ye WM, Chen YG, Chen B, Wang Q, Wang J (2010) Advances on the knowledge of the buffer/backfill properties of heavily-compacted GMZ bentonite. Eng Geol 116(1–2):12–20

    Article  Google Scholar 

  17. Baik MH, Cho WJ, Hahn PS (2007) Erosion of bentonite particles at the interface of a compacted bentonite and a fractured granite. Eng Geol 91(2–4):229–239

    Article  Google Scholar 

  18. Xu Y, Gao Z, Chu F, Liu C (2016) Fractal model for erosion mass of bentonite colloids. Environ Earth Sci 75(19):1229–1238

    Article  Google Scholar 

  19. Albarran N, Degueldre C, Missana T, Alonso U, García-Gutiérrez M, López T (2014) Size distribution analysis of colloid generated from compacted bentonite in low ionic strength aqueous solutions. Appl Clay Sci 95(4):284–293

    Article  CAS  Google Scholar 

  20. Bessho K, Degueldre C (2009) Generation and sedimentation of colloidal bentonite particles in water. Appl Clay Sci 43(2):253–259

    Article  CAS  Google Scholar 

  21. Missana T, Alonso U, Albarran N, García-Gutiérrez M, Cormenzana JL (2011) Analysis of colloids erosion from the bentonite barrier of a high level radioactive waste repository and implications in safety assessment. Phys Chem Earth 36(17–18):1607–1615

    Article  Google Scholar 

  22. Elo O, Hölttä P, Kekäläinen P, Voutilainen M, Huittinen N (2019) Neptunium(V) transport in granitic rock: a laboratory scale study on the influence of bentonite colloids. Appl Geochem 103:31–39

    Article  CAS  Google Scholar 

  23. Dittrich TM, Boukhalfa H, Ware SD, Reimus PW (2015) Laboratory investigation of the role of desorption kinetics on americium transport associated with bentonite colloids. J Environ Radioact 148(15):170–182

    Article  CAS  PubMed  Google Scholar 

  24. Albarran N, Missana T, Garcia-Gutierrez M, Alonso U, Mingarro M (2011) Strontium migration in a crystalline medium: effects of the presence of bentonite colloids. J Contam Hydrol 122(1–4):76–85

    Article  CAS  PubMed  Google Scholar 

  25. Wei X, Pan D, Xu Z, Xian D, Li X, Tan Z, Liu C, Wu W (2021) Colloidal stability and correlated migration of illite in the aquatic environment: the roles of pH, temperature, multiple cations and humic acid. Sci Total Environ 768:144174

    Article  CAS  PubMed  Google Scholar 

  26. Sun Y, Pan D, Wei X, Xian D, Wang P, Hou J, Xu Z, Liu C, Wu W (2020) Insight into the stability and correlated transport of kaolinite colloid: effect of pH, electrolytes and humic substances. Environ Pollut 266:115189

    Article  CAS  PubMed  Google Scholar 

  27. Walshe GE, Pang L, Flury M, Close ME, Flintoft M (2010) Effects of pH, ionic strength, dissolved organic matter, and flow rate on the co-transport of MS2 bacteriophages with kaolinite in gravel aquifer media. Water Res 44(4):1255–1269

    Article  CAS  PubMed  Google Scholar 

  28. Yang H, Ge Z, Wu D, Tong M, Ni J (2016) Cotransport of bacteria with hematite in porous media: effects of ion valence and humic acid. Water Res 88(1):586–594

    Article  CAS  PubMed  Google Scholar 

  29. Telfeyan K, Reimus PW, Boukhalfa H, Ware SD (2020) Aging effects on Cesium-137 (137Cs) sorption and transport in association with clay colloids. J Colloid Interface Sci 566:316–326

    Article  CAS  PubMed  Google Scholar 

  30. Li P, Liu Z, Ma F, Shi Q, Guo Z, Wu W (2015) Effects of pH, ionic strength and humic acid on the sorption of neptunium(V) to Na-bentonite. J Mol Liq 206(4):285–292

    Article  CAS  Google Scholar 

  31. Hu J, Xie Z, He B, Sheng G, Chen C, Li J, Chen Y, Wang X (2010) Sorption of Eu(III) on GMZ bentonite in the absence/presence of humic acid studied by batch and XAFS techniques. Sci China Chem 53(6):1420–1428

    Article  CAS  Google Scholar 

  32. Schnurr A, Marsac R, Rabung T, Lützenkirchen J, Geckeis H (2015) Sorption of Cm(III) and Eu(III) onto clay minerals under saline conditions: batch adsorption, laser-fluorescence spectroscopy and modeling. Geochim Cosmochim Acta 151(5):192–202

    Article  CAS  Google Scholar 

  33. Tan XL, Wang XK (2008) Sorption of Eu(III) on humic acid or fulvic acid bound to hydrous alumina studied by SEM-EDS, XPS, TRLFS, and batch techniques. Environ Sci Technol 42(5):6532–6537

    Article  CAS  PubMed  Google Scholar 

  34. Bradbury MH, Baeyens B (2005) Modelling the sorption of Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) on montmorillonite: linear free energy relationships and estimates of surface binding constants for some selected heavy metals and actinides. Geochim Cosmochim Acta 69(4):875–892

    Article  CAS  Google Scholar 

  35. Xu Z, Sun Y, Niu Z, Xu Y, Wei X, Chen X, Pan D, Wu W (2020) Kinetic determination of sedimentation for GMZ bentonite colloids in aqueous solution: effect of pH, temperature and electrolyte concentration. Appl Clay Sci 184:105393

    Article  CAS  Google Scholar 

  36. Xu Z, Pan D, Sun Y, Wu W (2018) Stability of GMZ bentonite colloids: aggregation kinetic and reversibility study. Appl Clay Sci 161(1):436–443

    Article  CAS  Google Scholar 

  37. Carstens JF, Bachmann J, Guggenberger G (2021) Aggregation and transport behavior of goethite colloids as affected by dissolved organic matter and pH: electrostatic vs. hydrophilic interactions. Colloid Surface A 609:125639

    Article  CAS  Google Scholar 

  38. Praetorius A, Badetti E, Brunelli A, Clavier A, Gallego-Urrea JA, Gondikas A, Hassellöv M, Hofmann T, Mackevica A, Marcomini A, Peijnenburg W, Quik JTK, Seijo M, Stoll S, Tepe N, Walch H, von der Kammer F (2020) Strategies for determining heteroaggregation attachment efficiencies of engineered nanoparticles in aquatic environments. Environ Sci Nano 10:1039

    Google Scholar 

  39. Liang Y, Bradford SA, Simunek J, Klumpp E (2019) Mechanisms of graphene oxide aggregation, retention, and release in quartz sand. Sci Total Environ 656:70–79

    Article  CAS  PubMed  Google Scholar 

  40. Markus AA, Parsons JR, Roex EW, de Voogt P, Laane RW (2015) Modeling aggregation and sedimentation of nanoparticles in the aquatic environment. Sci Total Environ 506–507:323–329

    Article  PubMed  Google Scholar 

  41. Verma PK, Romanchuk AY, Vlasova IE, Krupskaya VV, Zakusin SV, Sobolev AV, Egorov AV, Mohapatra PK, Kalmykov SN (2017) Np(V) uptake by bentonite clay: effect of accessory Fe oxides/hydroxides on sorption and speciation. Appl Geochem 78:74–82

    Article  CAS  Google Scholar 

  42. Verma PK, Pathak P, Mohapatra PK (2014) Sorption of metal cations on suspended bentonite: effects of pH, ionic strength and complexing anions. Radiochim Acta 102(5):401–409

    Article  CAS  Google Scholar 

  43. Košak A, Bauman M, Padežnik-Gomilšek J, Lobnik A (2017) Lead(II) complexation with 3-mercaptopropyl-groups in the surface layer of silica nanoparticles: Sorption, kinetics and EXAFS/XANES study. J Mol Liq 229:371–379

    Article  Google Scholar 

  44. Rihs S, Gaillard C, Reich T, Kohler SJ (2014) Uranyl sorption onto birnessite: a surface complexation modeling and EXAFS study. Chem Geol 373:59–70

    Article  CAS  Google Scholar 

  45. Benedicto A, Missana T, Degueldre C (2013) Predictions of TiO2-driven migration of Se(IV) based on an integrated study of TiO2 colloid stability and Se(IV) surface adsorption. Sci Total Environ 449(1):214–222

    Article  CAS  PubMed  Google Scholar 

  46. Sø HU, Postma D, Jakobsen R, Larsen F (2011) Sorption of phosphate onto calcite; results from batch experiments and surface complexation modeling. Geochim Cosmochim Acta 75(10):2911–2923

    Article  Google Scholar 

  47. Fan Q, Shao D, Lu Y, Wu W, Wang X (2009) Effect of pH, ionic strength, temperature and humic substances on the sorption of Ni(II) to Na-attapulgite. Chem Eng J 150(1):188–195

    Article  CAS  Google Scholar 

  48. Chavez ML, de Pablo L, Garcia TA (2010) Adsorption of Ba2+ by Ca-exchange clinoptilolite tuff and montmorillonite clay. J Hazard Mater 175(1–3):216–223

    Article  CAS  PubMed  Google Scholar 

  49. Missana T, Garcia-Gutierrez M, Alonso U (2008) Sorption of strontium onto illite/smectite mixed clays. Phy Chem Earth 33:S156–S162

    Article  Google Scholar 

  50. Magzoub MI, Nasser MS, Hussein IA, Benamor A, Onaizi SA, Sultan AS, Mahmoud MA (2017) Effects of sodium carbonate addition, heat and agitation on swelling and rheological behavior of Ca-bentonite colloidal dispersions. Appl Clay Sci 147(2):176–183

    Article  CAS  Google Scholar 

  51. Huang S, Pang H, Li L, Jiang S, Wen T, Zhuang L, Hu B, Wang X (2018) Unexpected ultrafast and high adsorption of U(VI) and Eu(III) from solution using porous Al2O3 microspheres derived from MIL-53. Chem Eng J 353(6):157–166

    Article  CAS  Google Scholar 

  52. Bachmaf S, Planer-Friedrich B, Merkel BJ (2008) Effect of sulfate, carbonate, and phosphate on the Uranium(VI) sorption behavior onto bentonite. Radiochim Acta 96(6):359–366

    Article  CAS  Google Scholar 

  53. Xu L, Zheng T, Yang S, Zhang L, Wang J, Liu W, Chen L, Diwu J, Chai Z, Wang S (2016) Uptake mechanisms of Eu(III) on hydroxyapatite: a potential permeable reactive barrier backfill material for trapping trivalent minor actinides. Environ Sci Technol 50(7):3852–3829

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22006060, U1730245, 21806063); the Fundamental Research Funds for the Central Universities (lzujbky-2021-sp29, lzujbky-2020-kb06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Duoqiang Pan or Wangsuo Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Niu, Z., Tang, Q. et al. Adsorption characteristics of Eu(III) on colloidal bentonite particles in aqueous solution: impact of colloid concentration, pH, foreign ions, and temperature. J Radioanal Nucl Chem 330, 765–773 (2021). https://doi.org/10.1007/s10967-021-07976-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07976-6

Keywords

Navigation