Skip to main content
Log in

Impregnation of covalent organic framework into porous silica support for the recovery of palladium ions from simulated high-level liquid waste

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In the present study, a porous silica-based covalent organic framework incorporated composite was prepared using a solvothermal reaction and the following wet-impregnation method. Multiple characterization methods including Scanning electron microscope, Fourier transform infrared spectroscopy, X-ray powder diffraction confirmed the surface morphology, thermal stability, and pore structure of the as-prepared composite. The adsorption performances of the prepared composite toward palladium [Pd(II)] from simulated high-level liquid waste were systematically investigated using batch experiments under the effect of contact time, solution temperature, and nitric acid solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sengupta P (2012) A review on immobilization of phosphate containing high level nuclear wastes within glass matrix–present status and future challenges. J Hazard Mater 235:23617–23628

    Google Scholar 

  2. Sant’ana LP, Cordeiro TC (2016) Management of radioactive waste: a review. Proc Int Acad Ecol Environ Sci 6:38–43

    Google Scholar 

  3. Abdel RRO, Ibrahium HA, Hung YT (2011) Liquid radioactive wastes treatment: a review. Water 3:551–565

    Article  Google Scholar 

  4. Sood DD, Patil SK (1996) Chemistry of nuclear fuel reprocessing: current status. J Radioanal Nucl Chem 203:547–573

    Article  CAS  Google Scholar 

  5. Smith RL Jr, Atmaji P, Hakuta Y, Kawaguchi M, Adschiri T, Arai K (1997) Recovery of metals from simulated high-level liquid waste with hydrothermal crystallization. J Supercrit Fluids 11:103–114

    Article  CAS  Google Scholar 

  6. Bourg S, Poinssot C (2017) Could spent nuclear fuel be considered as a non-conventional mine of critical raw materials. Prog Nucl Energy 94:222–228

    Article  CAS  Google Scholar 

  7. Schulz WW, Bray LA (1987) Solvent extraction recovery of byproduct 137Cs and 90Sr from HNO3 solutions–a technology review and assessment. Sep Sci Technol 22:191–214

    Article  CAS  Google Scholar 

  8. Egorova KS, Ananikov VP (2016) Which metals are green for catalysis? comparison of the toxicities of Ni, Cu, Fe, Pd, Pt, Rh, and Au salts. Angew Chem Int Ed 55:12150–12162

    Article  CAS  Google Scholar 

  9. Sekimoto S, Nakagawa H, Okazaki S, Fukuda K, Asakura S, Shigemori T, Takahashi S (2000) A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide. Sens Actuators B Chem 66:142–145

    Article  CAS  Google Scholar 

  10. Oh MY, Park SK, Park H, Kim H, Kang K, Kim JH, Roh KC, Shin TH (2018) Enhancement of oxygen reduction reaction catalytic activity via the modified surface of La0.6Sr0.4Co0.2Fe0.8O3−δ with palladium nanoparticles as cathode for lithium−air battery. ACS Appl Energy Mater 1:5518–5526

    CAS  Google Scholar 

  11. Reith F, Campbell SG, Ball AS, Pring A, Southam G (2014) Platinum in Earth surface environments. Earth Sci Rev 131:1–21

    Article  CAS  Google Scholar 

  12. Cowley A (2021) The PGM market report. http://www.platinum.matthey.com/documents/new-item/pgm-market-reports/pgm-market-report-february-2021.pdf

  13. Jensen GA, Platt AM, Mellinger GB, Bjorklund WJ (1984) Recovery of noble metals from fission products. Nucl Technol 65:305–324

    Article  CAS  Google Scholar 

  14. Bush RP (1991) Recovery of platinum group metals from high level radioactive waste. Platin Metals Rev 35:202–208

    CAS  Google Scholar 

  15. Li FH, Shang Y, Ding ZM, Weng HQ, Xiao JX, Lin MZ (2017) Efficient extraction and separation of palladium (Pd) and ruthenium (Ru) from simulated HLLW by photoreduction. Sep Purif Technol 182:9–18

    Article  Google Scholar 

  16. Ruhela R, Singh AK, Tomar BS, Hubli RC (2014) Separation of palladium from high level liquid waste–a review. RSC Adv 4:24344–24350

    Article  CAS  Google Scholar 

  17. Pokhitonov YA (2020) Recovery of platinoids from NPP spent nuclear fuel and outlook for their use. At Energy 127:367–374

    Article  CAS  Google Scholar 

  18. Ansari SA, Mohapatra PK (2017) A review on solid phase extraction of actinides and lanthanides with amide based extractants. J Chromatogr A 1499:1–20

    Article  CAS  PubMed  Google Scholar 

  19. Telmore VM, Kumar P, Jaison PG (2018) Study on complexation of palladium with thiourea-based ligands and its determination in simulated high-level liquid waste using solid phase extraction-electrospray mass spectrometry. J Radioanal Nucl Chem 318:1249–1259

    Article  CAS  Google Scholar 

  20. Cote AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM (2005) Porous, crystalline, covalent organic frameworks. Science 310:1166

    Article  CAS  PubMed  Google Scholar 

  21. Corma A, Garcia H, Llabres i Xamena FX (2010) Engineering metal organic frameworks for heterogeneous catalysis. Chem Rev 110:4606–4655

    Article  CAS  PubMed  Google Scholar 

  22. Lohse MS, Bein T (2018) Covalent organic frameworks: structures, synthesis, and applications. Adv Funct Mater 28:1705553

    Article  Google Scholar 

  23. Geng KY, He T, Liu RY, Dalapati S, Tan KT, Li ZP, Tao SS, Gong YF, Jiang QH, Jiang DL (2020) Covalent organic frameworks: design, synthesis, and functions. Chem Rev 120:8814–8933

    Article  CAS  PubMed  Google Scholar 

  24. Kandambeth S, Dey K, Banerjee R (2019) Covalent organic frameworks: chemistry beyond the structure. J Am Chem Soc 141:1807–1822

    Article  CAS  PubMed  Google Scholar 

  25. Kandambeth S, Mallick A, Lukose B, Mane MV, Heine T, Banerjee R (2012) Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J Am Chem Soc 134:19524–19527

    Article  CAS  PubMed  Google Scholar 

  26. Zhang J, Zhou LH, Jia ZM, Li XF, Qi Y, Yang CT, Guo XH, Chen SY, Long HH, Ma LJ (2020) Construction of covalent organic framework with unique double-ring pore for size-matching adsorption of uranium. Nanoscale 12:24044–24053

    Article  CAS  PubMed  Google Scholar 

  27. Lei ZD, Yang QS, Xu Y, Guo SY, Sun WW, Liu H, Lv LP, Zhang Y, Wang Y (2018) Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry. Nat Commun 9:576

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wen L, Wu P, Wang LL, Chen LZ, Wang ML, Wang X, Lin JM, Zhao RS (2020) Solid-phase microextraction using a β-ketoenamine-linked covalent organic framework coating for efficient enrichment of synthetic musks in water samples. Anal Methods 12:2434–2442

    Article  CAS  PubMed  Google Scholar 

  29. Yang CX, Liu C, Cao YM, Yan XP (2015) Facile room-temperature solution-phase synthesis of a spherical covalent organic framework for high-resolution chromatographic separation. Chem Commun 51:12254–12257

    Article  CAS  Google Scholar 

  30. Colson JW, Woll AR, Mukherjee A, Levendorf MP, Spitler EL, Shields VB, Spencer MG, Park J, Dichtel WR (2011) Oriented 2D covalent organic framework thin films on single-layer graphene. Science 332:228–231

    Article  CAS  PubMed  Google Scholar 

  31. You LJ, Xu K, Ding GJ, Shi XM, Li JM, Wang SY, Wang JB (2020) Facile synthesis of Fe3O4@COF covalent organic frameworks for the adsorption of bisphenols from aqueous solution. J Mol Liq 320:114456

    Article  CAS  Google Scholar 

  32. Wu Y, Lee CP, Mimura H, Zhang XX, Wei YZ (2018) Stable solidification of silica-based ammonium molybdophosphate byallophane: application to treatment of radioactive cesium in secondary solid wastes generated from fukushima. J Hazard Mater 341:46–54

    Article  PubMed  Google Scholar 

  33. Tan J, Namuangruk S, Kong W, Kungwan N, Guo J, Wang CC (2016) Manipulation of amorphous-to-crystalline transformation: towards the construction of covalent organic framework hybrid microspheres with NIR photothermal conversion ability. Angew Chem Int Ed 55:13979–13984

    Article  CAS  Google Scholar 

  34. Rabiul Awual Md, Khraisheh M, Alharthi NH, Luqman M, Islam A, Karim MR, Rahman MM, Khaleque MdA (2018) Efficient detection and adsorption of cadmium(II) ions using innovative nano-composite materials. Chem Eng J 343:118–127

    Article  Google Scholar 

  35. Wang HP, Wang T, Ma RR, Wu K, Li HL, Feng B, Li C, Shen YH (2020) Facile synthesis of sulfonated covalent organic framework for the adsorption of heavy metal ions. J Taiwan Inst Chem Eng 112:122–129

    Article  CAS  Google Scholar 

  36. ALOthman ZA (2012) A review: fundamental aspects of silicate mesoporous materials. Mater 5:2874–2902

    Article  CAS  Google Scholar 

  37. Vaibhav V, Vijayalakshmi U, Roopan SM (2015) Agricultural waste as a source for the production of silica nanoparticles. Spectrochim Acta A 139:515–520

    Article  CAS  Google Scholar 

  38. Ranjbakhsha E, Bordbar AK, Abbasia M, Khosropoura AR, Shams E (2012) Enhancement of stability and catalytic activity of immobilized lipase on silica-coated modified magnetite nanoparticles. Chem Eng J 179:272–276

    Article  Google Scholar 

  39. Wang W, Deng SB, Ren L, Li DY, Wang WJ, Vakili M, Wang B, Huang J, Wang YJ, Yu G (2018) Stable covalent organic frameworks as efficient adsorbents for high and selective removal of an aryl-organophosphorus flame retardant from water. ACS Appl Mater Interfaces 10:30265–30272

    Article  CAS  PubMed  Google Scholar 

  40. Simonin JP (2016) On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem Eng J 300:254–263

    Article  CAS  Google Scholar 

  41. Li LJ, Liu FQ, Jing XS, Ling PP, Li AM (2011) Displacement mechanism of binary competitive adsorption for aqueous divalent metal ions onto a novel IDA-chelating resin: isotherm and kinetic modeling. Water Res 45:1177–1188

    Article  CAS  PubMed  Google Scholar 

  42. Wu H, Kim SY, Miwa M, Matsuyama S (2021) Synergistic adsorption behavior of a silica-based adsorbent toward palladium, molybdenum, and zirconium from simulated high-level liquid waste. J Hazard Mater 5:125136

    Article  Google Scholar 

  43. Yi QP, Fan RY, Xie F, Zhang QL, Zhengrong L (2016) Recovery of Palladium(II) from nitric acid medium using a natural resin prepared from persimmon dropped fruits residues. J Taiwan Inst Chem Eng 61:299–305

    Article  CAS  Google Scholar 

  44. Mu WJ, Du SZ, Li XL, Yu QH, Wei HY, Yang YC, Peng SM (2019) Removal of radioactive palladium based on novel 2D titanium carbides. Chem Eng J 358:283–290

    Article  CAS  Google Scholar 

  45. Zha MQ, Liu J, Wong YL, Xu ZT (2015) Extraction of palladium from nuclear waste-like acidic solutions by a metal–organic framework with sulfur and alkene functions. J Mater Chem A 3:3928–3934

    Article  CAS  Google Scholar 

  46. Ruhela R, Singh KK, Tomar BS, Sharma JN, Kumar M, Hubli RC, Suri AK (2012) Amberlite XAD-16 functionalized with 2-acetyl pyridine group for the solid phase extraction and recovery of palladium from high level waste solution. Sep Purif Technol 99:36–43

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Yun Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Kudo, T., Takahashi, T. et al. Impregnation of covalent organic framework into porous silica support for the recovery of palladium ions from simulated high-level liquid waste. J Radioanal Nucl Chem 330, 1065–1074 (2021). https://doi.org/10.1007/s10967-021-07971-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07971-x

Keywords

Navigation