Skip to main content
Log in

Selective adsorption of molybdenum ions on ionic liquid-loaded resin containing 1-butyl-3-methylimidazolium(2,4,6-trimethyl)benzodithioate

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The adsorption of molybdenum (Mo) ions on ionic liquid-loaded XAD-7 resin containing 1-butyl-3-methylimidazolium(2,4,6-trimethyl)benzodithioate from acidic feed solutions was investigated. The novel loaded resin could adsorb more than 99.0% Mo ions from nitric acid solutions at a concentration between 0.050 and 0.50 M; however, the adsorption percentage of U(VI), Cs(I), Ce(III), Zr(IV) and Ru(III) ions was very low. With the further increase in the concentration of nitric acid, the distribution coefficient (Kd) of Mo ions by the loaded resin decreased. The separation factor (SFMo/U) was about 5000 at 0.50 M nitric acid. X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy results showed that Mo coordinated with sulfur, and part of Mo(VI) was reduced to Mo(IV). The results of column experiment indicated that about 94.7% Mo ions with a purity of over 99.0% was obtained by eluting with different concentrations of nitric acid.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. OECD-NEA (2017) The Supply of Medical Radioisotopes 2017 medical isotope supply review: 99Mo/99mTc market demand and production capacity projection

  2. Lee S-K, Beyer GJ, Lee JS (2016) Development of industrial-scale fission 99Mo production process using low enriched Uranium target. Nucl Eng Technol 48:613–623

    Article  Google Scholar 

  3. McDonald MJ, Carson SD, Naranjo GE, Wemple JA (2000) Challenges of extracting and purifying fission-produced molybdenum-99. Ind Eng Chem Res 39:3146–3150

    Article  CAS  Google Scholar 

  4. Tkac P, Paulenova A (2008) Speciation of molybdenum (VI) in aqueous and organic phases of selected extraction systems. Sep Sci Technol 43:2641–2657

    Article  CAS  Google Scholar 

  5. Mandal S, Mandal A, Lahiri S (2013) Species dependent extraction of 99Mo. J Radioanal Nucl Chem 295:861–863

    Article  CAS  Google Scholar 

  6. Zeng L, Cheng CY (2009) A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurisation catalysts Part II: separation and purification. Hydrometallurgy 98:10–20

    Article  CAS  Google Scholar 

  7. Xia CT, Fuenzalida VM (2003) Room temperature electrochemical growth of polycrystalline BaMoO4 films. J Eur Ceram Soc 23:519–525

    Article  CAS  Google Scholar 

  8. Wu J, Wei C, Li X, Wang S, Wang M, Li C (2012) Selective extraction of Mo using Cyanex-272 and tributyl phosphate from low grade Ni-Mo ore leach liquor. Sep and Purif Technol 99:120–126

    Article  CAS  Google Scholar 

  9. Xiao C, Zeng L, Xiao L, Zhang G (2017) Solvent extraction of molybdenum(VI) from hydrochloric acid leach solutions using P507. Part I: Extraction Mech Solvent Extr Ion Exch 35:130–144

    CAS  Google Scholar 

  10. Saberyan K, Maragheh MG, Ashtari P, Alamdari SK (2003) Liquid-liquid extraction of molybdenum(VI) from acidic media with Cyanex-301. Miner Eng 16:391–393

    Article  CAS  Google Scholar 

  11. Saily A, Khurana U, Yadav SK, Tandon SN (1996) Thiophosphinic acids as selective extractants for molybdenum recovery from a low grade ore and spent catalysts. Hydrometallurgy 41:99–105

    Article  CAS  Google Scholar 

  12. Lasheen TA, Ibrahim ME, Hassib HB, Helal AS (2014) Recovery of molybdenum from Uranium bearing solution by solvent extraction with 5-Nonylsalicylaldoxime. Hydrometallurgy 146:175–182

    Article  CAS  Google Scholar 

  13. Barik SP, Park KH, Parhi PK, Kim DJ, Nam CW (2014) Separation and recovery of molybdenum from acidic solution using LIX 973N. Sep Sci Technol 49:647–655

    Article  CAS  Google Scholar 

  14. Tkac P, Brown MA, Momen A, Wardle KE, Copple JM, Vandegrift GF (2018) MOEX: Solvent extraction approach for recycling enriched Mo98/Mo100 material. Sep Sci Technol 53:1856–1863

    Article  CAS  Google Scholar 

  15. Sato T, Watanabe H, Suzuki H (1986) Liquid-liquid extraction of molybdenum(VI ) from aqueous acid-solutions by high-molecular-weight amines. Solvent Extr Ion Exch 4:987–998

    Article  CAS  Google Scholar 

  16. Sahu KK, Agrawal A, Mishra D (2013) Hazardous waste to materials: Recovery of molybdenum and vanadium from acidic leach liquor of spent hydroprocessing catalyst using alamine 308. J Environ Manage 125:68–73

    Article  CAS  PubMed  Google Scholar 

  17. Leoncini A, Huskens J, Verboom W (2017) Ligands for f-element extraction used in the nuclear fuel cycle. Chem Soc Rev 46:7229–7273

    Article  CAS  PubMed  Google Scholar 

  18. Veliscek-Carolan J (2016) Separation of actinides from spent nuclear fuel: a review. J Hazard Mater 318:266–281

    Article  CAS  PubMed  Google Scholar 

  19. Sun X, Luo H, Dai S (2012) Ionic liquids-based extraction: a promising strategy for the advanced nuclear fuel cycle. Chem Rev 112:2100–2128

    Article  CAS  PubMed  Google Scholar 

  20. Dong K, Liu X, Dong H, Zhang X, Zhang S (2017) Multiscale studies on ionic liquids. Chem Rev 117:6636–6695

    Article  CAS  PubMed  Google Scholar 

  21. Jones MB, Gaunt AJ (2013) Recent developments in synthesis and structural chemistry of nonaqueous actinide complexes. Chem Rev 113:1137–1198

    Article  CAS  PubMed  Google Scholar 

  22. Villa R, Alvarez E, Porcar R, Garcia-Verdugo E, Luis SV, Lozano P (2019) Ionic liquids as an enabling tool to integrate reaction and separation processes. Green Chem 21:6527–6544

    Article  CAS  Google Scholar 

  23. Quijada-Maldonado E, Torres MJ, Romero J (2017) Solvent extraction of molybdenum (VI) from aqueous solution using ionic liquids as diluents. Sep Purif Technol 177:200–206

    Article  CAS  Google Scholar 

  24. Quijada-Maldonado E, Sanchez F, Perez B, Tapia R, Romero J (2018) Task-specific ionic liquids as extractants for the solvent extraction of molybdenum(VI) from aqueous solution using different commercial ionic liquids as diluents. Ind Eng Chem Res 57:1621–1629

    Article  CAS  Google Scholar 

  25. Vandegrift GF, Snelgrove JL, Aase S (1999) Converting targets and processes for fission-product molybdenum-99 from high- to low-enriched uranium. IAEA

  26. Bernhard G (1994) Separation of radionuclides from a fission-production by ion-exchange on alumina. J Radioanal Nucl Chem 177:321–325

    Article  CAS  Google Scholar 

  27. van der Walt TN, Coetzee PP (2004) The isolation of Mo-99 from fission material for use in the Mo-99/Tc-99m generator for medical use. Radiochim Acta 92:251–257

    Article  Google Scholar 

  28. Rao A, Sharma AK, Kumar P, Charyulu MM, Tomar BS, Ramakumar KL (2014) Studies on separation and purification of fission Mo-99 from neutron activated uranium aluminum alloy. Appl Radiat Isot 89:186–191

    Article  CAS  PubMed  Google Scholar 

  29. Ansari SA, Mohapatra PK (2017) A review on solid phase extraction of actinides and lanthanides with amide based extractants. J Chromatogr A 1499:1–20

    Article  CAS  PubMed  Google Scholar 

  30. Zhang A, Zhang W, Wang Y, Ding X (2016) Effective separation of cesium with a new silica-calix 4 biscrown material by extraction chromatography. Sep Purif Technol 171:17–25

    Article  CAS  Google Scholar 

  31. Gujar RB, Ansari SA, Verboom W, Mohapatra PK (2018) Highly efficient extraction chromatography resins containing dendrimers with DGA groups in ionic liquid for actinide uptake. Ind Eng Chem Res 57:13226–13234

    Article  CAS  Google Scholar 

  32. Van de Voorde M, Van Hecke K, Binnemans K, Cardinaels T (2020) Supported ionic liquid phases for the separation of samarium and europium in nitrate media: Towards purification of medical samarium-153. Sep Purif Technol 232:115939

    Article  Google Scholar 

  33. Mahanty B, Mohapatra PK (2020) Highly efficient separation of thorium from uranium in nitric acid feeds by solid phase extraction using Aliquat 336. Sep Purif Technol 237:116318

    Article  CAS  Google Scholar 

  34. Hawkins CA, Momen MA, Garvey SL, Kestell J, Kaminski MD, Dietz ML (2015) Evaluation of solid-supported room-temperature ionic liquids containing crown ethers as media for metal ion separation and preconcentration. Talanta 135:115–123

    Article  CAS  PubMed  Google Scholar 

  35. Falaras P, Mitsopoulou CA, Argyropoulos D, Lyris E, Psaroudakis N, Vrachnou E, Katakis D (1995) Synthesis, cyclic voltammetric eletrospray mass-spectrometric studies of a series of tris-substituted 1,2-dithiolene complexes of tungsten and molybdenum. Inorg Chem 34:4536–4542

    Article  CAS  Google Scholar 

  36. Fomitchev DV, Lim BS, Holm RH (2001) Electron distribution in the nonclassical bis(dithiolene) electron transfer series M(CO)2(S2C2Me2)20/1-/2- (M = Mo, W): Assessment by structural, spectroscopic, and density functional theory results. Inorg Chem 40:645–654

    Article  CAS  PubMed  Google Scholar 

  37. Yang XG, Freeman GKW, Rauchfuss TB, Wilson SR (1991) The dithiocarbonate route to 1,2-dithiolene complexes of molybdenum and tungsten. Inorg Chem 30:3034–3038

    Article  CAS  Google Scholar 

  38. Tian ZQ, Donahue JP, Holm RH (1995) Synthesis of new types of dithiolene ligands. Inorg Chem 34:5567–5572

    Article  CAS  Google Scholar 

  39. Grote J, Friedrich F, Berthold K, Hericks L, Neumann B, Stammler H-G, Mitzel NW (2018) Dithiocarboxylic acids: an old theme revisited and augmented by new preparative, spectroscopic and structural facts. Chem Eur J 24:2626–2633

    Article  CAS  PubMed  Google Scholar 

  40. Bonhote P, Dias AP, Papageorgiou N, Kalyanasundaram K, Gratzel M (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178

    Article  CAS  PubMed  Google Scholar 

  41. Hwang DS, Choung WM, Kim YK, Park JH, Park SJ (2002) Separation of 99Mo from a simulated fission product solution by precipitation with a-benzoinoxime. J Radioanal Nucl Chem 254:255–262

    Article  CAS  Google Scholar 

  42. Horwitz EP, Chiarizia R, Dietz ML (1992) A novel stronitum-selective extraction chromatographic resin. Solvent Extr Ion Exch 10:313–336

    Article  CAS  Google Scholar 

  43. Gebreyohannes AY, Upadhyaya L, Silva LP, Falca G, Carvalho PJ, Nunes SP (2020) Hollow fibers with encapsulated green amino acid-based ionic liquids for dehydration. ACS Sustain Chem Eng 8:17763–17771

    Article  CAS  Google Scholar 

  44. Bell TJ, Ikeda Y (2011) The application of novel hydrophobic ionic liquids to the extraction of uranium(VI) from nitric acid medium and a determination of the uranyl complexes formed. Dalton Trans 40:10125–10130

    Article  CAS  PubMed  Google Scholar 

  45. Dadachova K, La Riviere K, Anderson P (1999) Improved processes of molybdenum-99 production. J Radioanal Nucl Chem 240:935–938

    Article  CAS  Google Scholar 

  46. Sasaki T, Kobayashi T, Takagi I, Moriyama H (2008) Hydrolysis constant and coordination geometry of zirconium(IV). J Nucl Sci Technol 45:735–739

    Article  CAS  Google Scholar 

  47. Saptiama I, Kaneti YV, Suzuki Y, Tsuchiya K, Fukumitsu N, Sakae T, Kim J, Kang Y-M, Ariga K, Yamauchi Y (2018) Template-free fabrication of mesoporous alumina nanospheres using post-synthesis water-ethanol treatment of monodispersed aluminium glycerate nanospheres for molybdenum adsorption, Small 14:1800474

  48. Kondekar NP, Boebinger MG, Woods EV, McDowell MT (2017) In Situ XPS Investigation of transformations at crystallographically oriented MoS2 interfaces. ACS Appl Mater Interf 9:32394–32404

    Article  CAS  Google Scholar 

  49. Lince JR, Pluntze AM, Jackson SA, Radhakrishnan G, Adams PM (2014) Tribochemistry of MoS3 nanoparticle coatings. Tribol Lett 53:543–554

    Article  CAS  Google Scholar 

  50. de Barros’Bouchet MIMI, Martin JMJM, Le-Mogne TT, Vacher BB (2005) Boundary lubrication mechanisms of carbon coatings by MoDTC and ZDDP additives. Tribol Int 38:257–264

    Article  Google Scholar 

  51. Xiao C, Zeng L, Xiao L, Zhang G (2017) Solvent extraction of molybdenum (VI) from hydrochloric acid leach solutions using P507 Part I: extraction and mechanism. Solvent Extr Ion Exc 35:130–144

    Article  CAS  Google Scholar 

  52. Chen GJJ, McDonald JW, Bravard DC, Newton WE (1985) Synthetic utility of molybdenum diazene adducts-products, preparation, reactions, and spectral properties of oxo-free and (18O)oxo molybdenum complexes, lnorg. Chem 24:2327–2333

    CAS  Google Scholar 

  53. Singh R, Mahandra H, Gupta B (2018) Optimization of a solvent extraction route for the recovery of Mo from petroleum refinery spent catalyst using Cyphos IL 102. Solvent Extr Ion Exc 36:401–419

    Article  CAS  Google Scholar 

  54. Houben J (1906) Carbi-thio-acids. I. Arylcarbi-thio-acids. Ber Dtsch Chem Ges 39:3219–3233

    Article  CAS  Google Scholar 

  55. Kato S, Nishiwaki M, Inagaki S, Ohshima S, Ohno Y, Mizuta M, Murai T (1985) Preparation and characterization of bis(thioacyl) trisulfides and tetrasulfides. Chem Ber Recl 118:1684–1695

    Article  CAS  Google Scholar 

  56. Tatsumisago M, Matsubayashi G, Tanaka T, Nishigaki S, Nakatsu K (1982) Synthesis, spectroscopy, and X-ray crystallographic analysis of (η3-dithiobenzoato-SCS')oxo(trithioperoxybenzoato-S,S'S'')molybdenum(IV) and μ-oxo-bis[bis(dithiobenzoato-SS')oxomolybdenum(V)], J Chem Soc, Dalton Trans. 121–127

  57. Hlova IZ, Dolotko O, Boote BW, Pathak AK, Smith EA, Pecharsky VK, Balema VP (2018) Multi-principal element transition metal dichalcogenides via reactive fusion of 3D-heterostructures. Chem Commun 54:12574–12577

    Article  CAS  Google Scholar 

  58. Wang Y, Zhou Y, Han M, Xi Y, You H, Hao X, Li Z, Zhou J, Song D, Wang D, Gao F (2019) Environmentally-friendly exfoliate and active site self-assembly: thin 2D/2D heterostructure amorphous nickel-iron alloy on 2D materials for efficient oxygen evolution reaction, Small 15:1805435

  59. Yue Q, Wang L, Fan H, Zhao Y, Wei C, Pei C, Song Q, Huang X, Li H (2021) Wrapping plasmonic silver nanoparticles inside one-dimensional nanoscrolls of transition-metal dichalcogenides for enhanced photoresponse. Inorg Chem 60:4226–4235

    Article  CAS  PubMed  Google Scholar 

  60. Griffith WP, Nogueira HIS, Parkin BC, Sheppard RN, White AJP, Williams DJ (1995) Second-row and third-row transition-metal complex of dihydroxybenzonic acids, and the crystal-structure of [NME4]2[MoO2(2,3-DHB)2]·1.5H2O (2,3-H2DHB=2,3-dihyroxybenzoc acid), J Chem Soc, Dalton Trans, 1775–1781

  61. Whiting GT, Bartley JK, Dummer NF, Hutchings GJ, Taylor SH (2014) Vanadium promoted molybdenum phosphate catalysts for the vapour phase partial oxidation of methanol to formaldehyde. Appl Catala A-Gen 485:51–57

    Article  CAS  Google Scholar 

  62. Morgan SH, Magruder RH (1990) Raman-spectra of molybdenum phosphate-glasses and some crystalline analogs. J Am Ceram Soc 73:753–756

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. U1967216, 21976008, and 11575010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taiwei Chu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 229 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Chu, T. Selective adsorption of molybdenum ions on ionic liquid-loaded resin containing 1-butyl-3-methylimidazolium(2,4,6-trimethyl)benzodithioate. J Radioanal Nucl Chem 330, 775–784 (2021). https://doi.org/10.1007/s10967-021-07970-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07970-y

Keywords

Navigation