Skip to main content
Log in

Medical 15O production via the 16O(γ,n)15O reaction for blood flow examination

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

We propose a new scheme for producing medical 15O isotopes using a water target, for blood flow examination with Positron Emission Tomography. The 15O radioisotopes are produced via the 16O(γ,n)15O reaction in a water target. A simulation study has been carried out to determine the productivity of radioactive [15O]-water using bremsstrahlung γ–rays by a 40 MeV electron beam of 100 μA. The productivity of [15O]-water with an activity of 6.9 GBq was confirmed by a 10-min radiation exposure. Produced [15O]-water is easily and rapidly sent from the production site to a patient site through a transport tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. World Health Organization Fact sheets. The Top 10 causes of death. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death

  2. Raichle ME, Martin WR, Herscovitch P, Mintum MA, Markham J (1983) Brain blood flow measured with intravenous H215O. II. Implementation and validation. J Nucl Med 24:790–798

    CAS  PubMed  Google Scholar 

  3. Mintum MA, Raichle ME, Martin WR, Herscovitch P (1984) Brain oxgen utilization measured with O-15 radiotracers and positron emission tomography. J Nucl Med 25:177–187

    Google Scholar 

  4. Kudomi N, Hayashi T, Watabe H, Teramoto N, Piao R, Ose T, Koshino K, Ohta Y, Iida H (2009) A physiologic model for recirculation water correction in CMRO2 assessment with 15O2 inhalation PET. J Cereb Blood Flow Metab 29:355–364. https://doi.org/10.1038/jcbfm.2008.132

    Article  PubMed  Google Scholar 

  5. Iida H, Takahashi A, Tamura Y, Ono Y, Lammertsma AA (1995) myocardial blood flow: comparison of oxygen-15-water bolus injection, slow infusion and oxygen-15-carbon dioxide slow inhalation. J Nucl Med 36:78–85

    CAS  PubMed  Google Scholar 

  6. Watabe H, Jino H, Kawachi N, Teramoto N, Hayashi T, Ohta Y, Iida H (2005) Parametric imaging of myocardial blood flow with 15O-water and PET using the basis function method. J Nucl Med 46:1219–1224

    PubMed  Google Scholar 

  7. Kudomi N, Slimani L, Järvisalo MJ, Kiss J, Lautamäki R, Naum GA, Savunen T, Knuuti J, Iida H, Nuutila P, Iozzo P (2008) Non-invasive estimation of hepatic blood perfusion from H215O PET images using tissue-derived arterial and portal input functions. Eur J Nucl Med Mol Imaging 35:1899–1911. https://doi.org/10.1007/s00259-008-0796-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kudomi N, Koivuviita N, Liukko KE, Oikonen VJ, Tolvanen T, Iida H, Tertti R, Metsärinne K, Iozzo P, Nuutila P (2009) Parametric renal blood flow imaging using [15O]H2O and PET. Eur J Nucl Med Mol Imaging 36:683–691. https://doi.org/10.1007/s00259-008-0994-8

    Article  PubMed  Google Scholar 

  9. Lahesmaa M, Orava J, Schalin-Jäntti C, Soinio M, Hannukainen JC, Noponen T, Kirjavainen A, Iida H, Kudomi N, Enerbäck S, Virtanen KA, Nuutila P (2014) Hyperthyroidism increases brown fat metabolism in humans. J Clin Endocrinol Metab 99:E28-35. https://doi.org/10.1210/jc.2013-2312

    Article  PubMed  Google Scholar 

  10. Ter-Pogossian MM, Eichling JO, Davis DO, Welch MJ, Metzger JM (1969) The determination of regional cerebral blood flow by means of water. Labeled with radioactive oxygen 15. Radiology 93:31–40. https://doi.org/10.1148/93.1.31

    Article  CAS  PubMed  Google Scholar 

  11. Frackowiak RS, Lenzi GL, Jones T, Heather JD (1980) Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: therapy, procedure, and normal values. J Comput Assist Tomogr 4:727–736

    Article  CAS  Google Scholar 

  12. Ohta S, Meyer E, Thomson CJ, Gedde A (1992) Oxygen consumption of the living human brain measured after a single inhalation of positron emitting oxygen. J Cereb Blood Flow Metab 12:179–192. https://doi.org/10.1007/s12149-009-0235-7

    Article  CAS  PubMed  Google Scholar 

  13. Okazawa H, Kudo T (2009) Clinical impact of hemodynamic parameter measurement for cerebrovascular disease using positron emission tomography and 15O-labeled tracers. Ann Nucl Med 23:217–227. https://doi.org/10.1007/s12149-009-0235-7

    Article  CAS  PubMed  Google Scholar 

  14. Kudomi N, HiranoY KK, Hayashi T, Watabe T, Fukushima K, Moriwaki H, Teramoto N, Iihara K, Iida H (2013) Rapid Quantitative CBF and CMRO2 measurements from a single PET scan with sequential administration of dual 15O-labeled tracers. J Cereb Blood Flow Metab 33:440–448. https://doi.org/10.1038/jcbfm.2012.188

    Article  CAS  PubMed  Google Scholar 

  15. Iguchi S, Moriguchi T, Yamazaki M, Hori Y, Koshino K, Toyoda K, Teuho J, Shimochi S, Terakawa Y, Fukuda T, Takahashi JC, Nakagawa J, Kanaya S, Ilida H (2018) System evaluation of automated production and inhalation of 15O-labeled gaseous radiopharmaceuticals for the rapid 15O-oxygen PET examinations. EMMI Phys 5:37. https://doi.org/10.1186/s40658-018-0236-5

    Article  Google Scholar 

  16. Clark JC, Crouzel C, Meyer GJ, Strijckmans K (1987) Current methodology for oxygen-15 production for clinical use Int. J Radiat Appl Instrum A38:597–600. https://doi.org/10.1016/0883-2889(87)90122-5

    Article  Google Scholar 

  17. Powell J, O’Neil JP (2006) Production of [O-15]water at low-energy proton cyclotrons. Appl Radiat Isot 64:755–759. https://doi.org/10.1016/j.apradiso.2006.02.096

    Article  CAS  PubMed  Google Scholar 

  18. Beaver JE, Finn RD, Hupf HB (1976) A new method for the production of high concentration oxygen-15 labeled carbon dioxide with protons. Int J Appl Radiat Isot 27:195–197. https://doi.org/10.1016/0020-708X(76)90138-1

    Article  CAS  Google Scholar 

  19. Queern SL, Cardman R, Loveless CS, Shepherd MR, Lapi SE (2019) Production of 15O for medical applications via the 16O(γ, n)15O reaction. J Nucl Med 60:424–428. https://doi.org/10.2967/jnumed.118.215681

    Article  CAS  PubMed  Google Scholar 

  20. Sato T, Iwamoto I, Hashimoto S, Ogawa T, Furuta T, Abe S, Kai T, Tsai P, Matsuda N, Iwase H, Shigyo N, Sihver L, Niita K (2018) Features of particle and heavy ion transport code system (PHITS) version 3.02. J Nucl Sci Technol 55:684–690. https://doi.org/10.1080/00223131.2017.1419890

    Article  CAS  Google Scholar 

  21. Berman BL, Jury JW, Woodworth JG, Pywell RE, McNeill KG, Tompson MN (1983) Photoneutron cross section for 16O. Phys Rev C 27:1–5. https://doi.org/10.1103/PhysRevC.27.1

    Article  CAS  Google Scholar 

  22. Carlos P, Beil H, Bergère R, Berman BL, Leprètre A, Veyssière A (1982) Photoneutron cross section for oxygen from 24–133 MeV. Nucl Phys A 378:317–339. https://doi.org/10.1016/0375-9474(82)90596-6

    Article  Google Scholar 

  23. Kneissl U, Koop EA, Kuhl G, Leister KH, Weller A (1975) The quasimonoenergetic photon facility at the Giessen 65 MeV electron linear accelerator. Nucl Inst Methods 127:1–10. https://doi.org/10.1016/0029-554X(75)90294-3

    Article  CAS  Google Scholar 

  24. Veyssière A, Beil H, Bergère R, Carlos P, Leprêtre A, DeMiniac A (1974) A study of the photoneutron contribution to the giant dipole resonance of s-d shell. Nucl Phys A 227:513–540. https://doi.org/10.1016/0375-9474(74)90774-X

    Article  Google Scholar 

  25. Bamblett RL, Caldwell JT, Harvey RR, Fultz SC (1964) Photoneutron cross sections of Tb159 and O16. Phys Rev 133:B869-873. https://doi.org/10.1103/PhysRev.133.B869

    Article  Google Scholar 

  26. Caldwell JT, Bramblett RL, Berman BL, Harvey RR, Fultz SC (1965) Cross sections for the ground-and excited-state neutron group in the reaction O16(γ, n)O15. Phys Rev Lett 15:976–979. https://doi.org/10.1103/PhysRevLett.15.976

    Article  Google Scholar 

  27. Geant4 (2018) http://geant4.cern.ch

  28. Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G, Behner F, Bellagamba L, Boudreau J, Broglia L, Brunengo A, Burkhardt H, Chauvie S, Chuma J et al (2003) Geant4-a simulation toolkit. Nucl Instrum Methods Phys Res A 506:250–303. https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  CAS  Google Scholar 

  29. Allison J, Amako K, Apostolakis J, Araujo H, ArceDubois P, Asai M et al (2006) GEANT4 developments and applications. IEEE Trans Nucl Sci 53:270–277

    Article  Google Scholar 

  30. Allison J, Amako K, Apostolakis J, Arce P, Asai M, Aso T, Bagli E, Bagulya A, Banerjee S, Barrand G, Beck BR, Bogdanov AG, Brandt D, Brown JMC, Burkhardt H, Canal P, Cano-Ott D, Chauvie S, et al. (2016) Recent developents in Geant4. https://doi.org/10.1016/j.nima.2016.06.125

  31. General Chapter <979> Pharmaceutical compounding-sterile preparations. http://www.usp.org/compounding/general-charter-797

  32. Pan Q, Qiu W-Y, Huo Y-N, Yao Y-F, Lou MF (2011) Low Levels of hydrogen peroxide stimulate corneal epithelial cell adhesion, migration, and wound healing. Invest Opthalmol Vis Sci 52:1723–1734. https://doi.org/10.1167/iovs.10-5866

    Article  CAS  Google Scholar 

  33. Park W (2013) H, The effects of exogenous H2O2 on cell death, reactive oxygen species and glutathione levels in calf pulmonary artery and human umbilical vein endothelial cells. Int J Mol Med 31:471–476. https://doi.org/10.3892/ijmm.2012.1215

    Article  CAS  PubMed  Google Scholar 

  34. Le Caer S (2011) Water radiolysis: influence of oxide surface on h2 production under ionization radiation. Water 3:235–253. https://doi.org/10.3390/w3010235

    Article  CAS  Google Scholar 

  35. Kudomi N, Maeda Y, Yamamoto Y, Nishiyama Y (2016) Reconstruction of an input function from a dynamic PET water image using multiple tissue curves. Phys Med Biol 61:5755–5767. https://doi.org/10.1088/0031-9155/61/15/5755

    Article  CAS  PubMed  Google Scholar 

  36. Aikawa T, Naya M, Obara M, Manabe O, Magota K, Koyanagawa K, Asakawa N, Ito YM, Shiga T, Katoh C, Anzai T, Tsutsui H, Murthy VL, Tamaki N (2019) Effect of coronary revascularization on global coronary flow reserve in stable coronary artery disease. Cardiovasc Res 115:119–129. https://doi.org/10.1093/cvr/cvy169

    Article  CAS  PubMed  Google Scholar 

  37. Aikawa T, Naya M, Koyanagawa K, Manabe O, Obara M, Magota K, Oyama-Manabe N, Tamaki N, Anzai T (2020) Improved regional myocardial blood flow and flow reserve after coronary revascularization as assessed by serial 15O-water positron emission tomography/computed tomography. Eur Heart J Cardiovasc Imaging 21:36–46. https://doi.org/10.1093/ehjci/jez220

    Article  PubMed  Google Scholar 

  38. Shvedunov VI, Barday RA, Frolov DA, Gorbachev VP, Gribov IV, Knapp EA, Novikov GA, Pakhomov NI, Shvedunov IV, Skachkov VS, Sobenin NP, Trower WP, Tyurin SA, Vetrov AA, Yailijan VR, Zayarny DA (2004) A racetrack microtron with high brightness beams. Nucl Inst Methods Phys Res A 531:346–366. https://doi.org/10.1016/j.nima.2004.04.236

    Article  CAS  Google Scholar 

  39. Ermakov AN, Iskhanov BS, Kamanin AN, Pakhomov NI, Khankin VV, Shvedunov VI, Shvedunov NV, Zhuravlev EE, Karev AI, Sobenin NP (2018) A multipurpose pulse race-track microtron with an energy of 55 MeV. Instrum Exp Tech 61:173–191. https://doi.org/10.1134/S0020441218020136

    Article  Google Scholar 

Download references

Acknowledgements

It is a great pleasure for us to acknowledge H. Iida and J. Hatazawa for stimulating discussion on the [15O]-water radiopharmaceuticals and its clinical PET applications. We would like to express our gratitude to M. Shepherd, S.E. Lapi, N. Takahashi, and Y. Kosuge to discuss the production of an activity of 15O. Finally, we are grateful to Y. Aiba of Kyocera Co. Ltd. for the discussion on the application of medical radioisotopes 15O.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fujiwara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujiwara, M., Kurosawa, M., Tamura, M. et al. Medical 15O production via the 16O(γ,n)15O reaction for blood flow examination. J Radioanal Nucl Chem 330, 141–148 (2021). https://doi.org/10.1007/s10967-021-07963-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07963-x

Keywords

Navigation