Skip to main content
Log in

Research and application of an in-service chemical decontamination process for high temperature and high pressure circuit

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Here we present a newly developed two-step oxidative-reductive in-service chemical decontamination process suitable for high temperature and high pressure circuit (HTHPC) decontamination in a pressurized water reactor (PWR). Various process parameters on the corrosion depth and decontamination factor were investigated by employing different kinds of detergents. Under optimal conditions, the average decontamination factor is about 60.0 and the maximum corrosion depth is 0.20 um. Actual decontamination by applying this process to HTHPC, the dose field in most locations decreased by more than 89% and it’s proved that the decontamination process is completely suitable for the decontamination of PWRs in service.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhang H, Shi Y, Kutsuna M, Xu GJ (2010) Laser cladding of colmonoy 6 powder on AISI 316L austenitic stainless steel. Nucl Eng Des 240(10):2691–2696. https://doi.org/10.1016/j.nucengdes.2010.05.040

    Article  CAS  Google Scholar 

  2. Kermouche G, Kaiser AL, Gilles P, Bergheau JM (2007) Combined numerical and experimental approach of the impact-sliding wear of a stainless steel in a nuclear reactor. Wear 263(7–12):1551–1555. https://doi.org/10.1016/j.wear.2007.02.015

    Article  CAS  Google Scholar 

  3. Praveen A, Vijayarekha K, Abraham ST, Venkatraman B (2013) Signal quality enhancement using higher order wavelets for ultrasonic TOFD signals from austenitic stainless steel welds. Ultrasonics 53(7):1288–1292. https://doi.org/10.1016/j.ultras.2013.03.013

    Article  PubMed  Google Scholar 

  4. Uchida S, Katsumura Y (2013) Water chemistry technology – one of the key technologies for safe and reliable nuclear power plant operation. J Nucl Sci Technol 50(4):346–362. https://doi.org/10.1080/00223131.2013.773171

    Article  CAS  Google Scholar 

  5. Bach FW, Pfeifer W, Versemann R, Wilk P, Pfeifer W, Valencia L, Eisenmann B, Hammer G (2005) Decommissioning technologies, including recent developments and special features of the dismantling of nuclear research and prototype facilities. Kerntechnik 70(1–2):31–46. https://doi.org/10.3139/124.100223

    Article  CAS  Google Scholar 

  6. Gurau D, Deju R (2015) The use of chemical gel for decontamination during decommissioning of nuclear facilities. Radiat Phys Chem 106:371–375. https://doi.org/10.1016/j.radphyschem.2014.08.022

    Article  CAS  Google Scholar 

  7. Takakuni H, Yutaka K, Masato M (2000) Application of a laser to decontamination and decommissioning of nuclear facilities at JAERI. Proc SPIE The Int Soc Opt Eng 3887:94–103. https://doi.org/10.1117/12.375208

    Article  Google Scholar 

  8. Serebryakov VV, Kirillovich AP, Kurunov YI, Pravdin AK (2003) Radiation conditions during decontamination of an experimental facility for reprocessing nuclear fuel. Atom Energy 95(6):845–851

    Article  CAS  Google Scholar 

  9. Ishida K, Nagase M, Uetake N, Anazawa K, Nakamura F, Aizawa M, Yoshikawa H (2002) Low corrosive chemical decontamination method using pH control(II). J Nucl Sci Technol 39(9):941–949. https://doi.org/10.1080/18811248.2002.9715280

    Article  CAS  Google Scholar 

  10. George G (2002) Facilities for chemical decontamination in accident and emergency departments in the United Kingdom. Emerg Med J 19(5):453–457. https://doi.org/10.1136/emj.19.5.453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dong MS (2015) Prevention and decontamination of chemical, biological, radiological, and nuclear contaminants for the emergency medical personnel during ambulance services. Br Med J 35(3):183–189. https://doi.org/10.7599/hmr.2015.35.3.146

    Article  Google Scholar 

  12. Tapping RL, Davidson RD, Mcalpine E, Lister DH (1986) The composition and morphology of oxide films formed on type 304 stainless steel in lithiated high temperature water. Corros Sci 26(8):563–576. https://doi.org/10.1016/0010-938X(86)90024-7

    Article  CAS  Google Scholar 

  13. Lister DH, DaVidson RD, Mcalpine E (1987) The mechanism and kinetics of corrosion product release from stainless steel in lithiated high temperature water. Corros Sci. https://doi.org/10.1016/0010-938X(87)90068-0

    Article  Google Scholar 

  14. Stellwag B (1998) The mechanism of oxide film formation on austenitic stainless steels in high temperature water. Corros Sci 40(2–3):337–370. https://doi.org/10.1016/S0010-938X(97)00140-6

    Article  CAS  Google Scholar 

  15. Ziemniak SE, Hanson M, Sander PC (2008) Electropolishing effects on corrosion behavior of 304 stainless steel in high temperature, hydrogenated water. Corros Sci 50(9):2465–2477. https://doi.org/10.1016/j.corsci.2008.06.032

    Article  CAS  Google Scholar 

  16. Terachi T, Fujii K, Arioka K (2005) Microstructural characterization of SCC crack tip and oxide film for SUS 316 stainless steel in simulated PWR primary water at 320°C. J Nucl Sci Technol 42(2):225–232. https://doi.org/10.1080/18811248.2005.9726383

    Article  CAS  Google Scholar 

  17. Miyazawa T, Terachi T, Uchida S, Satoh T, Tsukada T, Satoh Y, Wada Y, Hosokawa H (2006) Effects of hydrogen peroxide on corrosion of stainless steel, (V) characterization of oxide film with multilateral surface analyses. J Nucl Sci Technol 43(8):884–895. https://doi.org/10.1080/18811248.2006.9711173

    Article  CAS  Google Scholar 

  18. Cissé S, Laffont L, Tanguy B, Lafont MC, Andrieu E (2012) Effect of surface preparation on the corrosion of austenitic stainless steel 304L in high temperature steam and simulated PWR primary water. Corros Sci 56(3):209–216. https://doi.org/10.1016/j.corsci.2011.12.007

    Article  CAS  Google Scholar 

  19. Soulas R, Cheynet M, Rauch E, Neisius T, Legras L, Domain C, Brechet Y (2013) TEM investigations of the oxide layers formed on a 316L alloy in simulated PWR environment. J Mater Sci 48(7):2861–2871. https://doi.org/10.1007/s10853-012-6975-0

    Article  CAS  Google Scholar 

  20. Kuang WJ, Wu XQ, Han EH (2012) Influence of dissolved oxygen concentration on the oxide film formed on 304 stainless steel in high temperature water. Corros Sci 63(5):259–266. https://doi.org/10.1016/j.corsci.2012.06.007

    Article  CAS  Google Scholar 

  21. Choudhry KI, Mahboubi S, Botton GA, Kish JR, Svishchev IM (2015) Corrosion of engineering materials in a supercritical water cooled reactor: characterization of oxide scales on Alloy 800H and stainless steel 316. Corros Sci 100:222–230. https://doi.org/10.1016/j.corsci.2015.07.035

    Article  CAS  Google Scholar 

  22. Nezakat M, Akhiani H, Penttilä S, Sabet SM, Szpunar J (2015) Effect of thermo-mechanical processing on oxidation of austenitic stainless steel 316L in supercritical water. Corros Sci 94:197–206. https://doi.org/10.1016/j.corsci.2015.02.008

    Article  CAS  Google Scholar 

  23. Hosokawa H, Nagase M, Fuse M, Watanabe Y (2013) Development of a suppression method for deposition of radioactive cobalt after chemical decontamination: application of a ferrite film formation process to an actual BWR plant. Nucl Sci Eng 175(2):135–148. https://doi.org/10.13182/NSE12-80

    Article  CAS  Google Scholar 

  24. Priya ARS, Muralidharan S, Velmurugan S, Venkatachari G (2008) Corrosion inhibitor for the chemical decontamination of primary coolant systems of nuclear power plants. Mater Chem Phys 110(2–3):269–275. https://doi.org/10.1016/j.matchemphys.2008.02.018

    Article  CAS  Google Scholar 

  25. Venkateswaran G (2003) Chemical decontamination of BWR nuclear systems. BARC Newslett 10(24):24–36. https://doi.org/10.13182/NSE12-80

    Article  Google Scholar 

  26. Szabó A, Varga K, Németh Z, Radó K, Oravetz D, Makó KÉ, Homonnay Z, Kuzmann E, Tilky P, Schunk J, Patek G (2006) Effect of a chemical decontamination procedure on the corrosion state of the heat exchanger tubes of steam generators. Corros Sci 48(9):2727–2749. https://doi.org/10.1016/j.corsci.2005.09.008

    Article  CAS  Google Scholar 

  27. Rufus AL, Velmurugan S, Sasikumar P, Sathyaseelan VS, Narasimhan SV, Mathur PK (1998) Ion-exchange considerations in dilute chemical decontamination processes operated in the regenerative mode. Nucl Technol 122(2):228–235. https://doi.org/10.1016/S0168-583X(98)00188-8

    Article  CAS  Google Scholar 

  28. Balaji V, Tripathi VS, Keny SJ, Venkateswaran G (2006) Studies on the process development for the chemical decontamination of stainless-steel systems: novel observations. Ind Eng Chem Res 45(13):4461–4470. https://doi.org/10.1021/ie058013e

    Article  CAS  Google Scholar 

  29. Amitai G, Murata H, Andersen JD, Koepsel RR, Russell AJ (2010) Decontamination of chemical and biological warfare agents with a single multi-functional material. Biomaterials 31(15):4417–4425. https://doi.org/10.1016/j.biomaterials.2010.02.004

    Article  CAS  PubMed  Google Scholar 

  30. Keny SJ, Kumbhar AG, Venkateswaran G, Kishore K (2005) Radiation effects on the dissolution kinetics of magnetite and hematite in EDTA and NTA-based dilute chemical decontamination formulations. Radiat Phys Chem 72(4):475–482. https://doi.org/10.1016/j.radphyschem.2003.12.055

    Article  CAS  Google Scholar 

  31. Rufus AL, Velmurugan S, Sathyaseelan VS, Narasimhan SV (2004) Comparative study of nitrilo triacetic acid(NTA) and EDTA as formulation constituents for the chemical decontamination of primary coolant systems of nuclear power plants. Prog Nucl Energ 44(1):13–31. https://doi.org/10.1016/S0149-1970(04)90005-4

    Article  CAS  Google Scholar 

  32. Varga K, Németh Z, Somlai J, Varga I, Szánthó R, Borszéki J, Halmos P, Schunk J, Tilky P (2002) Hydrodynamics of the effectiveness of the AP-CITROX decontamination technology. J Radioanal Nucl Chem 254(3):589–596. https://doi.org/10.1023/A:1021662726609

    Article  CAS  Google Scholar 

  33. Rufus AL, Sathyaseelan VS, Velmurugan S, Narasimhan SV (2004) NTA based formulation for the chemical decontamination of nuclear power plants. Nucl Eng 43(1):47–53. https://doi.org/10.1680/nuen.43.1.47.36390

    Article  CAS  Google Scholar 

  34. Morris R (2001) Recent chemical decontamination experience. Water Chem Nucl Reactor Syst 2:451–456. https://doi.org/10.1680/wconrs8v2.29583.0013

    Article  Google Scholar 

  35. Wood CJ (1990) A review of the application of chemical decontamination technology in the United States. Prog Nucl Energ 23(1):35–80. https://doi.org/10.1016/0149-1970(90)90013-U

    Article  CAS  Google Scholar 

  36. Thomas GF (1990) Propensity for Fe(II)oxalate precipitation in CAN-DECON decontaminations of CANDU primary heat transport systems. Ann Nucl Energy 17(10):531–544. https://doi.org/10.1016/0306-4549(90)90042-C

    Article  CAS  Google Scholar 

  37. Kottle S, Stowe RA, Bishop JV (2002) Development of an on-line analyzer for vanadous ion in lomi decontamination. Springer, US, pp 207–215

    Google Scholar 

  38. Feltcorn E (2006) Technology reference guide for radiologically contaminated surfaces. USEPA. 7–33.

  39. Linden U (1995) Full system decon: the Loviisa 2 experience. Nucl Eng Intern 40:41–45

    Google Scholar 

  40. Wille H, Bertholdt HO, Roumiguière F (1997) Chemical decontamination with the CORD UV process: principle and field experience. In: Proceedings of 4# regional meeting nuclear energy in central Europe. pp.199–208

  41. Jansen R, Bruijne AD (1998) Dose reduction by chemical decontamination. ATW Int Z Kernenerg 43(10):610–612

    CAS  Google Scholar 

  42. Morita S, Masakatsu A, Shinji O (2000) Application of a new Japanese chemical decontamination method to system decontamination of reactor cooling system in the FUGEN nuclear power station. Water Chem Nucl Reactor Syst 1:185–191

    Google Scholar 

  43. Chen MC, Wen QQ, Zhu Q, Huang H, Xie L (2017) Simulation of corrosion process for concrete filled steel tubular columns with the cellular automata method. Eng Fail Anal 82:298–307. https://doi.org/10.1016/j.engfailanal.2017.06.006

    Article  CAS  Google Scholar 

  44. Han MS, Jung KH, Yang YJ, Park IC, Kim SJ (2017) Corrosion damage characteristics of inconel 600 with reduction conditions in chemical decontamination process. J The Korean Inst Surf Eng 50(5):332–338

    Google Scholar 

  45. TSG G5003–2008, Boiler Chemical Cleaning Regulation

Download references

Acknowledgements

The authors gratefully acknowledge the support of the radiochemistry laboratory who funded this work, and also acknowledge the helpful comments of other colleagues in the laboratory. The radiochemistry laboratory affiliated to Nuclear Power Institute of China carried out frontier basic and applied research on the key radiochemical problems of radionuclide separation, decommissioning and treatment of three wastes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Cao.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, S., Wang, S., Li, X. et al. Research and application of an in-service chemical decontamination process for high temperature and high pressure circuit. J Radioanal Nucl Chem 330, 253–266 (2021). https://doi.org/10.1007/s10967-021-07946-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07946-y

Keywords

Navigation